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Appendix A contains the instructions for Experiment 1 (translated from German) and the description of the

Bayes-rational strategy adopted by observed in Experiment 3. Instructions for Experiments 2-4 were adapted

accordingly and they are available from the authors upon request. Appendix B provides complementary

results for Experiment 1, and the detailed results for Experiments 2-4 are to be found in Appendix C. We

describe in Appendix D the procedure to assign unobserved into decision rules. Appendix E characterizes

the representativeness of public guesses for signals, and it contains proofs related to the latter as well as

graphical illustrations of our model of intuitive observational learning. Appendix F details our estimation

and prediction procedures, and it complements the estimation and prediction results reported in the main

text. Appendices G and H investigate the robustness of our prediction results with respect to the modelling

specifications of intuitive observational learning. Finally, Appendix I evaluates the increase in the predictive

power of intuitive observational learning due to the inclusion of efficiency concerns.
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Appendix A. Instructions for Experiment 1

A.1. General Instructions

Welcome to the experiment!

Please do not touch the mouse and do not open the envelope until you are instructed to do so.

This is an experiment in decision-making and all your decisions will be treated in an anonymous way.

From now on, we ask you to remain seated quietly at your computer desk. Please do not talk, exclaim, or try

to communicate with other participants during the experiment. Participants who intentionally violate this

rule will be asked to leave the experiment without being financially compensated. If you have any questions

during the experiment, please raise your hand and wait for an experimenter to come to you.

Your earnings will depend partly on your decisions and partly on chance. In addition to the earnings

from your decisions, you will receive 3 Euros. This payment is to compensate you for showing up on time.

At the end of the experiment the total amount of money that you have earned will be paid to you privately

in cash.

Setting of the experiment

In the experiment, there are two roles: observed and unobserved.

7 participants have been assigned randomly to the role of observed. All 8 remaining participants have

been assigned to the role of unobserved. Each participant remains in the same role for the entire duration

of the experiment.

The experiment consists of 4 parts. Instructions for the first part of the experiment will be distributed

in a few moments. We ask you to read the instructions for the first part of the experiment carefully, and

once each participant has done so an experimenter will read them aloud. After the instructions for the first

part of the experiment have been read aloud, you will be informed about the role you have been assigned to,

observed or unobserved. Instructions for the second, third, and fourth part of the experiment will be made

available before each of the respective parts begins.
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A.2. Instructions for Part 1

Part 1 of the experiment consists of 3 independent rounds and each round is conducted in the same way.

I. How a round progresses

I.1. The assistant picks either BLUE or ORANGE at random.

Each round begins with the assistant picking either the color BLUE or the color ORANGE at random.

You and all other participants have just been instructed about the picking procedure which is as follows:

1. An experimenter shuffles a deck of 20 cards and lays them down on a table with the back of the cards

facing the assistant. 11 cards have a blue front and 9 cards have an orange front.

2. The assistant picks 1 card out of the 20 cards.

• If the picked card has a blue front then the color picked at random is BLUE.

• If the picked card has an orange front then the color picked at random is ORANGE.

In each round your task, which is also the task of each of the other participants, is to guess which color

has been picked at random by the assistant.

I.2. The assistant selects the “OBSERVED” and “UNOBSERVED” urns

Once a color has been picked at random, the assistant selects an urn labeled “OBSERVED” and an urn

labeled “UNOBSERVED” from a collection of urns containing blue and orange balls.

The composition of the urn labeled “OBSERVED” depends only on the color which has been picked at

random by the assistant. The composition of the urn labeled “OBSERVED” is as follows

In case the color BLUE has been picked, In case the color ORANGE has been picked,

the “OBSERVED” urn contains the “OBSERVED” urn contains

14 blue and 7 orange balls. 7 blue and 14 orange balls.

The composition of the urn labeled “UNOBSERVED” also depends only on the color picked at random

by the assistant. The composition of the urn labeled “UNOBSERVED” is as follows

In case the color BLUE has been picked, In case the color ORANGE has been picked,

the “UNOBSERVED” urn contains the “UNOBSERVED” urn contains

14 blue balls and 7 orange balls. 7 blue balls and 14 orange balls.

I.3. Each participant learns the color of 1 ball

Once the “OBSERVED” and “UNOBSERVED” urns have been selected by the assistant, each observed is

informed about the color of a ball drawn from the “OBSERVED” urn whereas each unobserved is informed

about the color of a ball drawn from the “UNOBSERVED” urn. Concretely,

• one of the experimenters approaches each observed, one at a time, to draw a ball from the “OB-

SERVED” urn. Each observed draws a ball without being able to see the composition of the “OB-

SERVED” urn. After each draw, the ball is returned to the urn before making the next draw. Apart

from the participant who draws the ball, no other participant sees its color. Thus, each observed is

informed about the color of 1 and only 1 ball drawn from the “OBSERVED” urn.
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• another experimenter approaches each unobserved, one at a time, to draw a ball from the “UNOB-

SERVED” urn. Each unobserved draws a ball without being able to see the composition of the “UNOB-

SERVED” urn. After each draw, the ball is returned to the urn before making the next draw. Apart

from the participant who draws the ball, no other participant sees its color. Thus, each unobserved is

informed about the color of 1 and only 1 ball drawn from the “UNOBSERVED” urn.

I.4. Each participant makes a guess

Each round consists of 8 guessing periods with one observed making a guess in each of the first seven

periods and one unobserved making a guess in each of the eight periods. Thus, each participant makes one

and exactly one guess in each round.

In each round the order in which observed make their guesses is randomly determined. If you have been

assigned to the role of an observed then, in a given round, you might be the first observed to make a guess,

or you might guess in any period from period 2 to period 6, or you might be the last observed to make a

guess.

Similarly, in each round the order in which unobserved make their guesses is randomly determined. If you

have been assigned to the role of an unobserved then, in a given round, you might be the first unobserved

to make a guess, or you might guess in any period from period 2 to period 7, or you might be the last

unobserved to make a guess.

First guessing period. In period 1, 1 observed and 1 unobserved are asked to guess which color has

been picked at random by the assistant. Once both guesses have been made, period 2 starts. The observed

and the unobserved who made a guess in period 1 do not make any further guess in the current round.

Guessing period 2 to 7. In period 2 to 7, the guess made by the observed in the previous period is

made public meaning that all other observed as well as all unobserved are informed of that guess. After that,

1 observed and 1 unobserved are asked to guess which color has been picked at random by the assistant.

Both participants do not make any further guess in the current round. Once both guesses have been made,

the next period starts.

Last guessing period. In period 8, the guess made by the observed in period 7 is made public and

only the unobserved who did not make a guess yet is asked to guess which color has been picked at random

by the assistant.

Please note that the guess made by each of the unobserved is kept private meaning that no other

unobserved and no observed is informed of the guess made by any of the unobserved.

Once each participant has made a guess, you and each of the other participants are informed of the color

that was actually picked at random by the assistant at the beginning of the round. Once all participants

have been informed, the round is over.

II. Earnings

In each of the 3 independent rounds, participants get paid for the guess they make. If the participant’s guess

matches the color picked at random by the assistant, the participant earns 1 Euro. If the participant’s guess

does not match the color picked at random by the assistant, the participant earns nothing.

Once the 3 independent rounds have been completed, participants are informed of the total amount of

euros they earned in the first part of the experiment.
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A.3. Instructions for Part 2

The second part of the experiment shares many similarities with the first part of the experiment. Still, the

two parts of the experiment differ in some respects.

Hereafter, we explain thoroughly the aspects of the second part of the experiment which were not present

in the first part of the experiment. On the other hand, the aspects of the second part of the experiment

which were already present in the first part of the experiment are merely mentioned without much detail.

Part 2 of the experiment consists of 6 independent rounds and each round is conducted in the same way.

I. How a round progresses

I.1. The assistant picks either BLUE or ORANGE at random

Each round begins with the assistant picking either the color BLUE or the color ORANGE at random.

The picking procedure used in part 2 of the experiment is identical to the picking procedure used in part 1

of the experiment.

In each round your task, which is also the task of each of the other participants, is to guess which color

has been picked at random by the assistant.

I.2. Each participant learns the color of 1 ball

Once a color has been picked at random by the assistant, each observed is informed about the color of a ball

drawn from the “OBSERVED” virtual urn whereas each unobserved is informed about the color of a ball

drawn from the “UNOBSERVED” virtual urn.

Detailed explanations about the drawing of balls from virtual urns will be displayed on the screen of

your computer after all participants have finished reading these two pages.1

I.3. Each participant makes guesses

In each round, after having learned the color of 1 ball, each participant has to guess which color has been

picked at random by the assistant. Each round consists of 8 guessing periods.

• In each round, an observed makes between 1 and 7 guesses.

• In each round, each unobserved makes 8 guesses.

First guessing period. In period 1, all 7 observed and all 8 unobserved are asked to guess which color

has been picked at random by the assistant. Once all 15 guesses have been made, period 2 starts.

Guessing period 2. At the beginning of period 2, the guess made by 1 of the 7 observed in period 1

is selected at random and this guess is shown to all 15 participants. The observed whose guess is randomly

selected does not make any further guess in the current round. Therefore, only 6 observed remain who can

guess in period 2. Afterwards, all 6 remaining observed and all 8 unobserved are asked to guess which color

has been picked at random by the assistant. Once all 14 guesses have been made, period 3 starts.

Guessing periods 3, 4, 5, and 6. At the beginning of the period, the guess made by 1 of the observed

in the previous period is selected at random and this guess is shown to all 15 participants. The observed

whose guess is randomly selected does not make any further guess in the current round. Afterwards, all

remaining observed and all 8 unobserved are asked to guess which color has been picked at random by the

assistant. Once all guesses have been made, the next period starts.

1The short on-screen demonstration of the draws from the virtual urns is available from the authors upon request.
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Guessing period 7. At the beginning of period 7, the guess made by 1 of the 2 observed in period 6

is selected at random and this guess is shown to all 15 participants. The observed whose guess is randomly

selected does not make any further guess in the current round. Therefore, only 1 observed remains who can

guess in period 7. Afterwards, the observed and all 8 unobserved are asked to guess which color has been

picked at random by the assistant. Once all 9 guesses have been made, period 8 starts.

Last guessing period. At the beginning of period 8, the guess made by the observed in period 7 is

shown to all 15 participants. The observed who guessed in period 7 does not make a guess in period 8.

Therefore, only the 8 unobserved are asked to guess which color has been picked at random by the assistant.

Please note that the guesses made by each of the unobserved are kept private meaning that no other

unobserved and no observed is informed of the guesses made by any of the unobserved.

Once all participants have made all their guesses, you and each of the other participants are informed

of the color that was actually picked at random by the assistant at the beginning of the round. Once all

participants have been informed, the round is over.

II. Earnings

In each of the 6 independent rounds, each participant gets paid for 1 and only 1 of the guesses made. If the

participant’s guess matches the color picked at random by the assistant, the participant earns 1 Euro. If

the participant’s guess does not match the color picked at random by the assistant, the participant earns

nothing.

1. For each observed, only the last guess is paid.

Each observed gets paid only for the last guess he/she made in the round. Said differently, the guess

of an observed is paid only in case the guess is made public meaning that it is observed by all 15

participants. Obviously, at the time a guess is made, an observed does not know whether the guess is

going to be made public or not. So, for each guess that an observed makes, there is a chance that this

guess is the one which is going to be paid.

2. For each unobserved, only the guess of the assigned period is paid.

In each of the 6 independent rounds, each unobserved makes a guess in each period for a total of

8 guesses. Once each of the unobserved has made 8 guesses, the round is over. As soon as the

round is over, each of the 8 unobserved is assigned a period number from 1 to 8. Concretely, one of

the unobserved is assigned to period 1, another unobserved is assigned to period 2, ..., and another

unobserved is assigned to period 8. The assignment is completely random meaning that the guesses

made by the unobserved do not influence the period numbers assigned to them. An unobserved gets

paid only for the guess made in the assigned period. Obviously, before having made all 8 guesses, an

unobserved does not know which period number is assigned to her/him. So, each guess that an

unobserved makes has an equal chance of being paid.

Once the 6 independent rounds have been completed, participants are informed of the total amount of

euros they earned in the second part of the experiment.
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A.4. Instructions for Part 3

Part 3 of the experiment consists of 6 independent rounds. Each round proceeds the same way as in part 2

except that

In case the color BLUE has been picked, In case the color ORANGE has been picked,

the “UNOBSERVED” urn contains the “UNOBSERVED” urn contains

18 blue balls and 3 orange balls. 3 blue balls and 18 orange balls.

Once the 6 independent rounds have been completed, participants are informed of the total amount of

euros they earned in the third part of the experiment.

A.5. Demographic Questionnaire

1. What is your field of study?

2. When were you born? (Month/Year)

3. Your gender: l Female l Male

To know our subject pool better, it would be helpful to learn about your cultural background. We thus

ask you to also answer the following questions.

4. What is your first language?

(By first language we mean the language you have mainly spoken during your childhood or at your

family home.)

5. What is your nationality?

A.6. Instructions for Part 4

Part 4 of the experiment consists of 6 independent rounds. Each round proceeds the same way as in part 3

except that

In case the color BLUE has been picked, In case the color ORANGE has been picked,

the “UNOBSERVED” urn contains the “UNOBSERVED” urn contains

12 blue balls and 9 orange balls. 9 blue balls and 12 orange balls.

Once the 6 independent rounds have been completed, participants are informed of the total amount of

euros they earned in the course of the experiment.
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A.7. Guessing Rule Adopted by Observed in Experiment 3

The role of observed is taken by computer algorithms. Each observed adopts the same rule to guess which

color the assistant randomly picked at the beginning of the round. As described below, the rule prescribes

that in each period the guess depends on the ball of the observed and the sequence of previous guesses.

Ball Current guess
of the of the

Period observed Sequence of previous guesses observed

1
‚̋ There is no previous guess in period 1 BLUE

‚̋ There is no previous guess in period 1 ORANGE

2

‚̋ BLUE BLUE

‚̋ ORANGE BLUE

‚̋ BLUE BLUE

‚̋ ORANGE ORANGE

3

‚̋ BLUE BLUE BLUE

‚̋ ORANGE BLUE BLUE

‚̋ ORANGE ORANGE ORANGE

‚̋ BLUE BLUE BLUE

‚̋ ORANGE BLUE ORANGE

‚̋ ORANGE ORANGE ORANGE

4

‚̋ BLUE BLUE BLUE BLUE

‚̋ ORANGE BLUE BLUE BLUE

‚̋ ORANGE BLUE ORANGE BLUE

‚̋ ORANGE ORANGE ORANGE ORANGE

‚̋ BLUE BLUE BLUE BLUE

‚̋ ORANGE BLUE BLUE BLUE

‚̋ ORANGE BLUE ORANGE ORANGE

‚̋ ORANGE ORANGE ORANGE ORANGE

5

‚̋ BLUE BLUE BLUE BLUE BLUE

‚̋ ORANGE BLUE BLUE BLUE BLUE

‚̋ ORANGE BLUE ORANGE BLUE BLUE

‚̋ ORANGE BLUE ORANGE ORANGE ORANGE

‚̋ ORANGE ORANGE ORANGE ORANGE ORANGE

‚̋ BLUE BLUE BLUE BLUE BLUE

‚̋ ORANGE BLUE BLUE BLUE BLUE

‚̋ ORANGE BLUE ORANGE BLUE ORANGE

‚̋ ORANGE BLUE ORANGE ORANGE ORANGE

‚̋ ORANGE ORANGE ORANGE ORANGE ORANGE
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Ball Current guess
of the of the

Period observed Sequence of previous guesses observed

6

‚̋ BLUE BLUE BLUE BLUE BLUE BLUE

‚̋ ORANGE BLUE BLUE BLUE BLUE BLUE

‚̋ ORANGE BLUE ORANGE BLUE BLUE BLUE

‚̋ ORANGE BLUE ORANGE BLUE ORANGE BLUE

‚̋ ORANGE BLUE ORANGE ORANGE ORANGE ORANGE

‚̋ ORANGE ORANGE ORANGE ORANGE ORANGE ORANGE

‚̋ BLUE BLUE BLUE BLUE BLUE BLUE

‚̋ ORANGE BLUE BLUE BLUE BLUE BLUE

‚̋ ORANGE BLUE ORANGE BLUE BLUE BLUE

‚̋ ORANGE BLUE ORANGE BLUE ORANGE ORANGE

‚̋ ORANGE BLUE ORANGE ORANGE ORANGE ORANGE

‚̋ ORANGE ORANGE ORANGE ORANGE ORANGE ORANGE

7

‚̋ BLUE BLUE BLUE BLUE BLUE BLUE BLUE

‚̋ ORANGE BLUE BLUE BLUE BLUE BLUE BLUE

‚̋ ORANGE BLUE ORANGE BLUE BLUE BLUE BLUE

‚̋ ORANGE BLUE ORANGE BLUE ORANGE BLUE BLUE

‚̋ ORANGE BLUE ORANGE BLUE ORANGE ORANGE ORANGE

‚̋ ORANGE BLUE ORANGE ORANGE ORANGE ORANGE ORANGE

‚̋ ORANGE ORANGE ORANGE ORANGE ORANGE ORANGE ORANGE

‚̋ BLUE BLUE BLUE BLUE BLUE BLUE BLUE

‚̋ ORANGE BLUE BLUE BLUE BLUE BLUE BLUE

‚̋ ORANGE BLUE ORANGE BLUE BLUE BLUE BLUE

‚̋ ORANGE BLUE ORANGE BLUE ORANGE BLUE ORANGE

‚̋ ORANGE BLUE ORANGE BLUE ORANGE ORANGE ORANGE

‚̋ ORANGE BLUE ORANGE ORANGE ORANGE ORANGE ORANGE

‚̋ ORANGE ORANGE ORANGE ORANGE ORANGE ORANGE ORANGE
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Appendix B. Complementary Results for Experiment 1

In this appendix, we first report the fraction of (ex-post) correct guesses. Then, we explain how we imple-

mented the split-sample instrumental variable (IV) method described in Weizsäcker (2010) and Ziegelmeyer,

March, and Kruegel (2013), and we present figures on the responses to value contra PI that complement

the figure shown in the main text. We also report the regression results underlying all these figures. Finally,

we discuss the dynamics of observed guesses over the three non-practice parts.

B.1. Fractions of Correct Guesses

Table B1 reports the fraction of (ex-post) correct guesses by role and by signal quality for the unobserved,

and for the same majorities of public guesses as in Table 2 of the main text. In each case, we distinguish

between guesses which follow private information (FPI) and guesses which contradict private information

(CPI), and we average the fraction of correct guesses across signals.

Observed Unobserved
History of Medium quality Low quality Medium quality High quality

public guesses FPI CPI FPI CPI FPI CPI FPI CPI

Favoring majority .846 .097 .722 .231 .850 .089 .935 .048
(1,603) (031) (1,484) (026) (1,531) (045) (1,738) (021)

No majority .688 .320 .559 .439 .641 .353 .842 .167
(1,502) (075) (655) (057) (629) (051) (716) (012)

1 .529 .510 .471 .621 .426 .589 .720 .214
Contrary (490) (098) (172) (195) (209) (090) (293) (014)

2 .369 .546 .381 .699 .179 .599 .659 .310
majority (103) (174) (042) (186) (056) (142) (126) (029)

3 .270 .534 .280 .663 .222 .595 .606 .283
of (037) (176) (025) (184) (036) (173) (094) (053)

4 .294 .562 .143 .671 .158 .582 .563 .274
size (017) (121) (014) (140) (019) (158) (064) (062)

ě 5 .444 .580 .059 .672 .276 .604 .600 .234
(009) (100) (017) (259) (029) (288) (110) (124)

Note: In each cell, the 1st (resp. 2nd) row reports the fraction of correct guesses (resp. number of guesses).

Table B1: Fractions of Correct Guesses

Whatever the size of the contrary majority, the more profitable guess consists in following private infor-

mation for unobserved with high quality signals. In fact, FPI guesses are at least twice more likely to be

correct than CPI guesses which indicates that herding at large contrary majorities with high quality signals

is severely harmful. When receiving low or medium quality signals, it is more profitable for unobserved

to contradict private information when the contrary majority is of size ě 1. By contrast, herding is more

profitable for observed only when the contrary majority is of size ě 2. There is therefore a discrepancy in

the relative profitability of CPI guesses between unobserved with medium quality signals and observed at

contrary majorities of size 1. This discrepancy reflects the fact that fractions of correct guesses inaccurately

capture how successfully subjects learn from others.
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B.2. The Split-sample IV Method

The fact that value contra PI imperfectly measures the true expected value of contradicting private infor-

mation could invalidate the inferences on observational learning behavior. We address this inference problem

in two (non-exclusive) ways.

First, the statistical analysis is conducted on different subsets of data with more and more stringent

minimum thresholds for sitcount. In the next subsection of this appendix we check that the analysis

reported in the main text is robust to variations in the minimum threshold for sitcount.

The second approach uses an instrumental variable (IV) to correct for measurement error in statistical

analyses where value contra PI is an explanatory variable (see, e.g., Cameron and Trivedi, 2005, Chapter

4 and 6). A valid instrument is obtained by randomly splitting the dataset in two subsets of approximately

equal size, deriving value contra PI separately on each subset, and using one of the estimates as an instru-

ment for the other. However, a considerable efficiency loss could occur because only half of the sample is

used to derive the empirical value of contradicting private information.

The efficiency loss takes two forms. First, value contra PI can often not be derived in both subsets

though it can be derived in the entire dataset. This results in a smaller number of observations that can

be used in IV regressions. Second, the split-sample method increases the measurement error in monetary

incentives as the control variable included in IV regressions is value contra PI1, the empirical value of

contradicting private information in the first subset. Note also that the instrument relevance, measured by

the relation between value contra PI1 and value contra PI2 (the empirical value of contradicting private

information in the second subset), may be low.

We perform 100 random splits of the dataset, and we select the split that minimizes the efficiency loss

and reaches a high instrument relevance. To do so, we calculate for each split 12 penalty scores where a

score captures the ranking of the considered split relative to the other splits. There are three penalty scores

for observed and three penalty scores for each signal quality of unobserved. In each case, the first score

relates to the number of observations that can be used in the IV regression, and the two other scores relate

to the increase in measurement error and instrument relevance. Penalty scores for the relation between

value contra PI1 and value contra PI, and between value contra PI1 and value contra PI2, respectively,

are based on the R2 in the corresponding OLS regression. We select the split which minimizes the average

penalty score among all splits which satisfy R2 ą 0.9 in each of the regressions. This procedure ensures

reasonable results for each role and each signal quality.

Out of the 10,039 observations with sitcount ě 10, the selected split enables us to estimate the value of

contradicting private information in both subsets for 9,714 observations (across the 100 randomly generated

splits the number of available observations ranges from 7,866 to 9,861), and it achieves an R2 larger than

0.93 in each regression.

Clustering

Since subjects’ behavior is likely to be influenced by individual characteristics and session dynamics, we

have a nested hierarchy of potential levels of clustering (across which residuals are likely to be dependent).

As is recommended in this case we rely on cluster-robust standard errors computed at the most aggregated

level of clustering, i.e., at the session level (see e.g. Cameron and Miller, 2010). And to correct for the small

number of clusters, we apply a finite-cluster correction to the cluster-robust estimate of the variance matrix.
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B.3. Responses to value contra PI

Here we report the regression results discussed in subsection 2.2.2 of the main text along with robust-

ness checks. We regress the proportion to contradict private information against a cubic polynomial in

value contra PI fully interacted with indicator variables for the role and the different parts (or signal

qualities) for the unobserved. Table B2 reports the regression results based on the IV specification for

sitcount ě 10, the threshold considered in the main text, as well as for sitcount ě 1 and 20. Table B3

reports the regression results based on the OLS specification for sitcount ě 10, 20, and 30.

sitcount ě 1 sitcount ě 10 sitcount ě 20
Constant -0.123 -0.124 -0.050

(0.100) (0.100) (0.107)

value contra PI1 1.962˚ 1.968˚ 1.167
(1.107) (1.109) (1.187)

pvalue contra PI1q
2 -8.612˚˚ -8.626˚˚ -6.163˚

(3.462) (3.466) (3.700)

pvalue contra PI1q
3 12.433˚˚˚ 12.443˚˚˚ 10.293˚˚˚

(3.128) (3.131) (3.330)

Unobserved in part 2 0.304˚˚ 0.305˚˚ 0.232˚
(0.124) (0.124) (0.133)

Unobserved in part 2 ˆ value contra PI1 -3.564˚˚˚ -3.570˚˚˚ -2.769˚
(1.320) (1.321) (1.420)

Unobserved in part 2 ˆ pvalue contra PI1q
2 12.005˚˚˚ 12.019˚˚˚ 9.556˚˚

(4.048) (4.049) (4.345)

Unobserved in part 2 ˆ pvalue contra PI1q
3 -11.250˚˚˚ -11.260˚˚˚ -9.109˚˚

(3.609) (3.610) (3.841)

Unobserved in part 3 0.088 0.089 0.017
(0.136) (0.136) (0.145)

Unobserved in part 3 ˆ value contra PI1 -0.642 -0.648 0.132
(2.188) (2.188) (2.283)

Unobserved in part 3 ˆ pvalue contra PI1q
2 -2.714 -2.700 -5.124

(11.815) (11.816) (11.976)

Unobserved in part 3 ˆ pvalue contra PI1q
3 18.482 18.472 20.665

(20.692) (20.691) (20.537)

Unobserved in part 4 0.456˚˚ 0.459˚˚ 0.329
(0.216) (0.216) (0.215)

Unobserved in part 4 ˆ value contra PI1 -4.708˚˚ -4.707˚˚ -3.363
(2.146) (2.147) (2.155)

Unobserved in part 4 ˆ pvalue contra PI1q
2 14.076˚˚ 13.986˚˚ 10.053

(6.089) (6.085) (6.177)

Unobserved in part 4 ˆ pvalue contra PI1q
3 -13.167˚˚˚ -13.049˚˚˚ -9.760˚

(5.027) (5.023) (5.139)

Observations 9,738 9,714 9,644
R2 0.468 0.469 0.495

Notes: i) Robust standard errors in parentheses, clustered at the session level.

ii) ˚ (10%); ˚˚ (5%); and ˚˚˚ (1%) significance level.

Table B2: Propensity to Contradict Private Information (IV regressions)

Figure B1 (resp. B2) plots value contra PI against the proportion of contradictions collected in identical

guessing situations with sitcount ě 1 (resp. sitcount ě 20), and it superimposes fitted curves from the IV

regressions. There is basically no difference between the average responses to value contra PI predicted by

IV regressions for samples of guessing situations with sitcount ě 1, 10 or 20.
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sitcount ě 10 sitcount ě 20 sitcount ě 30
Constant 0.124˚ 0.072 0.033

(0.054) (0.071) (0.057)

value contra PI -0.901 -0.274 0.181
(0.599) (0.791) (0.599)

pvalue contra PIq2 0.935 -1.003 -2.304
(1.834) (2.385) (1.758)

pvalue contra PIq3 2.944˚ 4.466˚ 5.261˚˚
(1.493) (1.967) (1.615)

Unobserved in part 2 0.280 0.223 0.166
(0.153) (0.124) (0.109)

Unobserved in part 2 ˆ value contra PI -3.026 -2.345 -1.642
(1.724) (1.372) (1.192)

Unobserved in part 2 ˆ pvalue contra PIq2 9.281 6.563 3.908
(5.609) (4.222) (3.917)

Unobserved in part 2 ˆ pvalue contra PIq3 -6.950 -3.806 -0.593
(5.215) (3.696) (3.903)

Unobserved in part 3 -0.088 -0.061 -0.037
(0.058) (0.078) (0.059)

Unobserved in part 3 ˆ value contra PI 0.085 0.109 0.351
(1.001) (1.108) (0.585)

Unobserved in part 3 ˆ pvalue contra PIq2 4.990 2.618 -2.919
(5.289) (4.941) (2.225)

Unobserved in part 3 ˆ pvalue contra PIq3 -7.731 -1.983 10.180˚
(8.625) (7.592) (5.050)

Unobserved in part 4 0.358˚˚ 0.248˚˚ 0.222˚˚
(0.111) (0.103) (0.081)

Unobserved in part 4 ˆ value contra PI -3.660˚˚ -2.630˚˚ -2.378˚˚
(1.163) (1.098) (0.846)

Unobserved in part 4 ˆ pvalue contra PIq2 10.258˚˚ 7.530˚˚ 6.719˚˚
(3.249) (3.145) (2.287)

Unobserved in part 4 ˆ pvalue contra PIq3 -8.821˚˚˚ -6.675˚˚ -5.657˚˚
(2.479) (2.479) (1.717)

Observations 11,217 10,391 9,155
R2 0.517 0.527 0.546

Notes: i) Robust standard errors in parentheses, clustered at the session level.

ii) ˚ (10%); ˚˚ (5%); and ˚˚˚ (1%) significance level.

Table B3: Propensity to Contradict Private Information (OLS regressions)
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Notes: i) ‚̋, ‚̋, ‚̋: Unobserved guesses made with high, medium and low quality signals respectively;
‚̋: Observed guesses.

ii) The four colored curves are the fitted curves from the IV regression reported in the second
column of Table B2.

Figure B1: Responses to the Empirical Value of Contradicting Private Information psitcount ě 1q

Notes: i) ‚̋, ‚̋, ‚̋: Unobserved guesses made with high, medium and low quality signals respectively;
‚̋: Observed guesses.

ii) The four colored curves are the fitted curves from the IV regression reported in the fourth
column of Table B2.

Figure B2: Responses to the Empirical Value of Contradicting Private Information psitcount ě 20q
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Figure B3 (resp. B4 and B5) plots value contra PI against the proportion of contradictions collected in

identical guessing situations with sitcount ě 10 (resp. sitcount ě 20 and sitcount ě 30), and it superimposes

fitted curves from the OLS regressions.

Notes: i) ‚̋, ‚̋, ‚̋: Unobserved guesses made with high, medium and low quality signals respectively;
‚̋: Observed guesses.

ii) The four colored curves are the fitted curves from the OLS regression reported in the second
column of Table B3.

Figure B3: Responses to the Empirical Value of Contradicting Private Information psitcount ě 10q

In the case of unobserved with low quality signals and observed, the average response to value contra PI

predicted by the OLS regression, whether the minimum threshold for sitount is 10, 20 or 30, is similar to

the one predicted by IV regressions. In the case of unobserved with high quality signals, the OLS regression

predicts an excessive herding as pronounced as the one predicted by IV regressions only when the minimum

threshold for sitcount is 30. As expected, OLS regressions may require a more precise measure of the value of

contradicting private information to deliver similar statistical results as IV regressions. On the other hand,

based on the OLS regression results, we fail to reject the hypothesis that unobserved with medium quality

signals probabilistically best respond to the value of their available information. Indeed, the vertical distance

between the OLS fitted line of unobserved with medium quality signals and (0.5, 0.5) is insignificant for all

sitcount minimum thresholds (two-tailed p-values ą 0.1). This contrasts with IV regression results according

to which the null that unobserved with medium quality signals are better responders to value contra PI is

rejected. As emphasized in subsection 2.3 of the main text, our contention is that unobserved with medium

quality signals are quite successful in learning from others.
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Notes: i) ‚̋, ‚̋, ‚̋: Unobserved guesses made with high, medium and low quality signals respectively;
‚̋: Observed guesses.

ii) The four colored curves are the fitted curves from the OLS regression reported in the third
column of Table B3.

Figure B4: Responses to the Empirical Value of Contradicting Private Information psitcount ě 20q

Notes: i) ‚̋, ‚̋, ‚̋: Unobserved guesses made with high, medium and low quality signals respectively;
‚̋: Observed guesses.

ii) The four colored curves are the fitted curves from the OLS regression reported in the fourth
column of Table B3.

Figure B5: Responses to the Empirical Value of Contradicting Private Information psitcount ě 30q
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B.4. Dynamics of Observed Guesses

Table B4 reports the percentage of observed guesses that contradict private information by the signal and

for different majorities of public guesses in the three non-practice parts (and averaged across them).

History of All parts Part 1 Part 2 Part 3
public guesses b o b o b o b o

Favoring majority 02% 02% 03% 02% 02% 04% 00% 01%
(889) (745) (301) (273) (316) (216) (272) (256)

No majority 03% 06% 03% 08% 04% 06% 02% 05%
(796) (781) (257) (254) (271) (264) (268) (263)

1 14% 20% 13% 24% 16% 17% 12% 19%
Contrary (292) (296) (091) (086) (091) (109) (110) (101)

2 63% 63% 61% 72% 73% 65% 55% 52%
majority (136) (141) (041) (047) (044) (048) (051) (046)

3 81% 84% 76% 87% 86% 91% 81% 76%
of (106) (107) (034) (038) (036) (032) (036) (037)

4 89% 87% 86% 89% 91% 88% 88% 83%
size (062) (076) (022) (027) (023) (026) (017) (023)

ě 5 91% 92% 89% 96% 82% 92% 100% 89%
(043) (066) (018) (023) (011) (025) (014) (018)

Note: In each cell, the first row reports the percentage of guesses that contradict private

information and the second row reports the number of guesses.

Table B4: Percentages of Observed Guesses that Contradict Private Information

Except in the few situations where the contrary majority is very large (of size ě 5), observed guesses

are more informative in part 3 than in the first two parts where they are about equally informative. This is

particularly striking when observed face contrary majorities of size 2: the relative frequency of contradicting

private information averaged over the two signal realizations is only 54% in part 3 while it is 67% in part 1

and 68% in part 2. While our dynamics are weaker than in March and Ziegelmeyer (2016), we confirm that

observed guesses become more informative over time.
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Appendix C. Detailed Results for Experiments 2-4

This appendix details the data analysis in Experiments 2-4. First, we examine the nature of the histories of

public guesses in the different decision periods, i.e., the observed guesses that have been publicly revealed

up to the (beginning of the) relevant period. Second, we measure the empirical success of observational

learning. Finally, we discuss the dynamics of unobserved guesses over the three non-practice parts.

C.1. Histories of Public Guesses

Table C1 (resp. C2) shows the distributions of majority sizes of public signals (resp. Bayes-rational guesses)

in each period derived from the 72 repetitions of the 2S3Q game in Experiment 2 (resp. 3).

Difference between the number of blue and orange public signals

´7 ´6 ´5 ´4 ´3 ´2 ´1 0 1 2 3 4 5 6 7

Period 45.83% 54.17%
2 (49.29%) (50.71%)

Period 23.61% 48.61% 27.78%
3 (24.80%) (48.98%) (26.22%)

Period 9.72% 37.50% 36.11% 16.67%
4 (12.73%) (36.21%) (37.26%) (13.80%)

Period 4.17% 22.22% 45.83% 20.83% 6.94%
5 (6.65%) (24.29%) (35.99%) (25.69%) (7.38%)

Period 1.39% 13.89% 36.11% 27.78% 18.06% 2.78%
6 (3.54%) (15.58%) (29.56%) (30.42%) (16.90%) (4.00%)

Period 0% 8.33% 22.22% 26.39% 30.56% 11.11% 1.39%
7 (1.91%) (9.78%) (22.31%) (29.38%) (23.59%) (10.85%) (2.19%)

Period 0% 6.94% 15.28% 25.00% 20.83% 23.61% 6.94% 1.39%
8 (1.04%) (6.06%) (16.03%) (25.34%) (26.07%) (17.39%) (6.86%) (1.21%)

Note: In gray and between parentheses we report the expected percentage according to the state-dependent Bernoulli distribution with parameter value 12/21.

Table C1: Distributions of Majority Sizes of Public Signals

Difference between the number of blue and orange Bayes-rational guesses

´7 ´6 ´5 ´4 ´3 ´2 ´1 0 1 2 3 4 5 6 7

Period 34.72% 65.28%
2 (48.33%) (51.67%)

Period 15.28% 19.44% 65.28%
3 (26.11%) (22.22%) (51.67%)

Period 15.28% 9.72% 9.72% 65.28%
4 (26.11%) (10.74%) (11.48%) (51.67%)

Period 15.28% 6.94% 2.78% 9.72% 65.28%
5 (26.11%) (5.80%) (4.94%) (11.48%) (51.67%)

Period 15.28% 6.94% 1.39% 1.39% 9.72% 65.28%
6 (26.11%) (5.80%) (2.39%) (2.55%) (11.48%) (51.67%)

Period 15.28% 6.94% 0% 1.39% 1.39% 9.72% 65.28%
7 (26.11%) (5.80%) (1.29%) (1.10%) (2.55%) (11.48%) (51.67%)

Period 15.28% 6.94% 0% 0% 1.39% 1.39% 9.72% 65.28%
8 (26.11%) (5.80%) (1.29%) (0.53%) (0.57%) (2.55%) (11.48%) (51.67%)

Note: In gray and between parentheses we report the expected percentage according to Bayesian rationality.

Table C2: Distributions of Majority Sizes of Bayes-rational guesses

As expected, unobserved mostly face short majorities of public signals in Experiment 2. For example,

(almost) 85% of the majorities of public signals are of size less than or equal to 3 in period 8. On the

other hand, most histories are information cascades in the later periods of Experiment 3 which implies that

18



unobserved mostly face long majorities of Bayes-rational guesses (from period 3 on, 80% of the histories

are cascades). The only marked difference between the empirical and expected distributions of histories

concerns the ratio of B and O-cascades: though only twice more B than O-cascades were expected, there

are four times more B than O-cascades in Experiment 3.

Table C3 shows the distributions of histories of public guesses in each period derived from the 72 repe-

titions of the 2S3Q game in Experiment 4. For the sake of space, we shorten the notation of histories—for

example histories BBOBB and OOOO are shortened to 2BO2B and 4O—and from period 5 on we only

report histories which occur at least 4 times.

Period B O
2 63% 37%

Period 2B BO OB 2O
3 39% 24% 18% 19%

Period 3B 2BO BOB B2O O2B OBO 2OB 3O
4 33% 06% 14% 10% 08% 10% 04% 15%

Period 4B 2BOB BO2B B3O O3B OB2O 4O
5 31% 06% 11% 06% 08% 07% 13%

Period 5B 2BO2B BO3B B4O O4B 5O
6 31% 06% 07% 06% 08% 11%

Period 6B BO4B B5O O5B 6O
7 28% 06% 06% 08% 10%

Period 7B BO5B B6O O6B 7O
8 28% 06% 06% 07% 10%

Table C3: Distributions of Public Histories in Experiment 4

As in Experiment 1, many empirical histories are such that guess O follows guess B (almost a quarter

of histories that occur in period 3 or later) and some empirical histories are such that either guess O follows

guesses BB or guess B follows guesses OO (together, one tenth of histories that occur in period 4 or later).

These non-Bayes rational guesses imply that empirical histories are more diverse than predicted. As in

Experiment 1, the predicted distribution of final histories differs significantly from the empirical one (Chi-

square test; p´value ă 0.01) where only 38% of the final histories are full laboratory cascades. The only

noticeable difference between histories of observed guesses in the two experiments is that the ratio of B to

O-cascades in Experiment 1 is about half the ratio in Experiment 4.

C.2. Empirical Success of Observational Learning

C.2.1 Proportions and Values of Contradicting Private Information

Table C4 reports the percentage of (human) guesses that contradict private information in each experiment

by the signal of each role and for different majorities of public guesses. We group together large contrary

and favoring majorities as fewer data are available for majorities of size 4 or more, especially in Experiment

2. The table also reports in each cell the average tvcPI (resp. vcPI) in Experiments 2-3 (resp. Experiment

4) and the number of guesses. As discussed extensively in the main text, several of the regularities found in

Experiment 1 are also present in Experiments 2-4: i) subjects often guess in accordance with their private

information at favoring and no majorities; ii) the higher their signal quality the more often unobserved follow

their private information; iii) subjects contradict their private information more frequently with orange than

with blue signals at contrary majorities of size 1, but the difference vanishes at larger contrary majorities;

and iv) subjects’ propensity to contradict private information increases with the size of the contrary majority.
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Experiment 2 Experiment 3 Experiment 4
Unobserved signal quality Unobserved signal quality Unobserved signal quality

History of Low Medium High Low Medium High Observed Low Medium High
public guesses b o b o b o b o b o b o b o b o b o b o

ě 4 03% 10% 05% 00% 01% 00% 05% 02% 03% 05% 03% 02% 03% 08% 03% 06% 03% 01% 01% 02%

Favoring
.152 .208 .107 .162 .035 .055 .235 .186 .170 .133 .064 .048 .132 .134 .196 .152 .137 .140 .050 .067
(098) (041) (096) (008) (096) (053) (646) (164) (776) (108) (812) (168) (122) (037) (478) (120) (390) (171) (447) (179)

3 04% 08% 05% 09% 02% 01% 07% 02% 02% 06% 03% 04% 05% 02% 05% 08% 04% 02% 02% 02%

majority
.206 .279 .147 .205 .054 .079 .235 .186 .170 .133 .064 .048 .125 .140 .180 .169 .127 .131 .045 .060
(207) (099) (221) (056) (169) (113) (184) (055) (202) (033) (211) (046) (102) (045) (193) (066) (154) (087) (172) (101)

2 06% 09% 07% 05% 02% 02% 07% 00% 03% 03% 03% 00% 02% 04% 08% 12% 05% 04% 04% 02%

of size
.257 .340 .187 .256 .071 .103 .235 .186 .170 .133 .064 .048 .139 .156 .199 .207 .130 .165 .051 .061
(220) (139) (233) (131) (178) (181) (184) (055) (202) (033) (211) (046) (171) (077) (234) (068) (216) (098) (199) (104)

1 04% 15% 03% 07% 03% 03% 07% 10% 05% 06% 03% 04% 03% 07% 07% 09% 04% 06% 03% 01%
.315 .407 .235 .314 .093 .133 .235 .314 .170 .234 .064 .092 .187 .240 .266 .327 .192 .253 .072 .099
(322) (296) (310) (367) (265) (366) (192) (142) (210) (085) (219) (094) (285) (175) (272) (164) (275) (179) (236) (165)

No majority
08% 19% 03% 09% 03% 04% 11% 21% 06% 09% 03% 09% 05% 12% 06% 13% 02% 09% 01% 02%
.380 .478 .290 .379 .120 .169 .380 .478 .290 .379 .120 .169 .292 .378 .384 .473 .296 .373 .121 .169
(544) (488) (534) (538) (517) (507) (346) (318) (285) (299) (301) (275) (493) (522) (347) (375) (358) (356) (329) (377)

1 23% 53% 09% 21% 08% 10% 56% 67% 39% 52% 13% 28% 16% 34% 43% 51% 18% 29% 06% 07%

Contrary
.450 .550 .353 .449 .154 .214 .551 .647 .450 .550 .214 .289 .444 .523 .537 .613 .431 .515 .203 .265
(328) (286) (361) (298) (386) (279) (154) (176) (075) (214) (082) (181) (153) (293) (134) (264) (159) (257) (141) (260)

2 61% 76% 32% 56% 16% 18% 93% 83% 78% 75% 50% 40% 57% 65% 66% 69% 51% 56% 26% 18%

majority
.522 .620 .421 .521 .195 .266 .711 .647 .621 .550 .353 .289 .577 .612 .676 .695 .554 .640 .290 .366
(141) (204) (133) (207) (179) (182) (057) (168) (023) (206) (034) (173) (063) (174) (056) (226) (090) (208) (068) (205)

3 75% 83% 54% 71% 32% 30% 95% 83% 78% 79% 50% 51% 84% 85% 73% 78% 69% 68% 39% 32%

of size
.593 .685 .492 .592 .244 .326 .711 .647 .621 .550 .353 .289 .616 .633 .736 .717 .584 .637 .319 .368
(101) (201) (056) (203) (095) (159) (057) (168) (023) (206) (034) (173) (037) (110) (048) (195) (083) (146) (061) (174)

ě 4 74% 85% 88% 76% 42% 54% 90% 85% 82% 82% 55% 53% 96% 93% 82% 81% 70% 72% 68% 44%
.678 .758 .564 .674 .318 .439 .711 .647 .621 .550 .353 .289 .635 .617 .759 .698 .575 .613 .344 .357
(031) (094) (008) (080) (019) (096) (172) (602) (068) (792) (120) (660) (045) (120) (078) (458) (179) (370) (107) (451)

Note: In each cell, from top to bottom: percentage of guesses that contradict private information, tvcPI (resp. vcPI) in Experiments 2-3 (resp. Experiment 4), and number of guesses.

Table C4: Proportions and Values of Contradicting Private Information
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C.2.2 Values of Contradicting Private Information

Table C5 (resp. C6) reports the true values of contradicting private information in Experiment 2 (resp. 3)

by majorities of public guesses and by roles, distinguishing between signal qualities for unobserved. Since

all favoring majorities are grouped together, the table reports the mean of tvcPI in the first row.

Observed Unobserved
History of Medium quality Low quality Medium quality High quality

public guesses b o b o b o b o

Favoring majority
.28 .38 .26 .38 .19 .30 .07 .12
(410) (334) (706) (304) (662) (381) (529) (463)

No majority
.38 .48 .38 .48 .29 .38 .12 .17
(567) (566) (485) (422) (496) (519) (477) (465)

1
.45 .55 .45 .55 .35 .45 .15 .21
(251) (248) (226) (235) (248) (232) (314) (234)

Contrary
2

.52 .62 .52 .62 .42 .52 .20 .27
(061) (106) (063) (172) (082) (147) (117) (132)

majority
3

.59 .68 .59 .68 .49 .59 .24 .33
(014) (051) (039) (158) (016) (146) (031) (123)

of
4

— .74 — .74 — .66 .30 .39
(000) (013) (000) (051) (000) (050) (011) (048)

size
ě 5

— — — .79 — — — —
(000) (000) (000) (011) (000) (000) (000) (000)

Note: Each cell contains tvcPI and the number of individual observations.

Table C5: True Values of Contradicting Private Information in Experiment 2

Observed Unobserved
History of Medium quality Low quality Medium quality High quality

public guesses b o b o b o b o

Favoring majority
.17 .18 .23 .23 .17 .16 .06 .06
(857) (278) (1183) (408) (1382) (251) (1445) (314)

No majority
.29 .38 .38 .48 .29 .38 .12 .17
(457) (414) (338) (310) (269) (283) (285) (259)

1
.45 .55 .55 .65 .45 .55 .21 .29
(133) (215) (146) (165) (067) (206) (074) (173)

Contrary
2

.62 .55 .71 .65 .62 .55 .35 .29
(047) (180) (057) (165) (023) (206) (026) (173)

majority
3

.62 .55 .71 .65 .62 .55 .35 .29
(028) (139) (057) (165) (023) (206) (026) (173)

of
4

.62 .55 .71 .65 .62 .55 .35 .29
(019) (096) (057) (165) (023) (206) (026) (173)

size
ě 5

.62 .55 .71 .65 .62 .55 .35 .29
(011) (091) (115) (437) (045) (586) (078) (487)

Note: Each cell contains tvcPI and the number of individual observations.

Table C6: True Values of Contradicting Private Information in Experiment 3

Table C7 reports the empirical values of contradicting private information in Experiment 4 by majorities
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of public guesses and by roles, distinguishing between signal qualities for unobserved. In each cell, the first

row displays the mean of vcPI, the second row displays the first and ninth deciles of vcPI, and the third row

displays the total number of individual observations included in all guessing situations.

Observed Unobserved
History of Medium quality Low quality Medium quality High quality

public guesses b o b o b o b o

Favoring majority
.16 .19 .22 .23 .16 .18 .06 .07

.12´ .18 .11´ .26 .18´ .24 .14´ .35 .13´ .18 .10´ .26 .05´ .07 .04´ .12

(599) (266) (1043) (295) (1090) (395) (1200) (414)

No majority
.29 .38 .38 .48 .29 .37 .12 .17

.27´ .29 .38´ .40 .36´ .40 .46´ .50 .27´ .30 .36´ .40 .11´ .13 .16´ .18

(468) (498) (309) (338) (334) (332) (306) (354)

1
.44 .53 .55 .62 .44 .52 .21 .27

.38´ .46 .48´ .54 .51´ .56 .58´ .64 .38´ .46 .46´ .54 .17´ .22 .22´ .28

(137) (282) (086) (238) (122) (205) (102) (231)

Contrary

2
.60 .60 .68 .69 .55 .65 .29 .34

.52´ .62 .58´ .61 .62´ .71 .64´ .70 .37´ .62 .61´ .61 .17´ .35 .31´ .34

(052) (150) (041) (163) (069) (129) (052) (150)

majority

3
.67 .64 .75 .72 .58 .64 .31 .37

.67´ .67 .62´ .64 .75´ .75 .65´ .73 .35´ .67 .64´ .64 .15´ .40 .36´ .37

(026) (090) (018) (134) (046) (086) (031) (120)

of

4
.66 .62 .75 .70 .57 .62 .30 .36

.66´ .66 .62´ .62 .75´ .75 .65´ .71 .33´ .66 .62´ .62 .14´ .40 .36´ .36

(018) (053) (018) (105) (046) (074) (030) (088)

size

ě 5
.67 .61 .76 .69 .63 .60 .37 .34

.67´ .67 .60´ .61 .75´ .77 .69´ .70 .24´ .69 .59´ .61 .10´ .43 .33´ .34

(014) (053) (051) (261) (100) (216) (068) (250)

Note: In each cell, from top to bottom: mean of vcPI, 1st ´ 9th deciles of vcPI, and number of individual
observations.

Table C7: Empirical Values of Contradicting Private Information in Experiment 4

Empirical values of contradicting private information in Experiment 4 are similar to those in Experiment

1. In particular, for each role and each signal quality, the empirically optimal guess at favoring majorities

consists in following private information. The average incentives to act in accordance with private informa-

tion are at least three times stronger than the average incentives to contradict private information. Further

down the table incentives to contradict private information increase till the contrary majority reaches size

3, but then incentive levels hardly vary with additional contrary guesses. According to the estimated values

of contradicting private information, contrary majorities of size ě 2 aggregate about two private signals.

In the last two columns of the table, the incentives to follow private information are at least 1.5 times

stronger than the incentives to contradict private information. Unobserved should therefore always follow

their private information when endowed with high quality signals. On the other hand, unobserved with low

quality signals should herd at contrary majorities of any size and they should follow their private informa-

tion otherwise (columns 4-5). Still, incentives to make the empirically optimal guess are weak in the case

of no majority and an orange signal. Given the average incentive levels in columns 2-3 and 6-7 of the table,

subjects with medium quality signals should follow (resp. contradict) their private information at favoring

and no majorities (resp. at contrary majorities of size ě 2). At contrary majorities of size 1 they should

follow (resp. contradict) their private information with a blue signal (resp. an orange signal) though, as

expected, incentives to make the empirically optimal guess are rather weak.
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C.2.3 Responses to the Value of Contradicting Private Information

Here we report the regression results discussed in subsection 3.2.2 of the main text. In Experiments 2 and

3, we regress the proportion to contradict private information against a cubic polynomial in tvcPI fully in-

teracted with indicator variables for the signal quality of unobserved. Table C8 reports the regression results.

Experiment 2 Experiment 3
Constant 0.525˚˚˚ 0.899˚˚˚

(0.097) (0.167)

Low 0.408˚˚˚ -0.154
(0.127) (0.216)

High -0.474˚˚˚ -0.642˚˚˚
(0.095) (0.175)

tvcPI -4.887˚˚˚ -8.919˚˚˚
(0.945) (1.824)

ptvcPIq2 13.172˚˚˚ 25.186˚˚˚
(2.763) (5.671)

ptvcPIq3 -7.639˚˚˚ -17.280˚˚˚
(2.357) (5.287)

Low ˆ tvcPI -2.992˚˚˚ 3.060
(1.045) (1.921)

Low ˆ ptvcPIq2 6.395˚˚ -11.408˚˚
(2.748) (5.375)

Low ˆ ptvcPIq3 -4.449˚ 10.146˚˚
(2.263) (4.792)

Highˆ tvcPI 3.799˚˚˚ 2.931
(0.965) (2.317)

Highˆ ptvcPIq2 -4.850 15.189
(3.551) (12.653)

Highˆ ptvcPIq3 0.237 -42.351˚
(4.673) (22.519)

Observations 11,520 11,520
R2 0.326 0.491

Notes: i) Robust standard errors in parentheses, clustered at the

session level.

ii) ˚ (10%); ˚˚ (5%); and ˚˚˚ (1%) significance level.

Table C8: Propensity to Contradict Private Information in Experiments 2-3

In Experiment 4, we regress the proportion to contradict private information against a cubic polynomial

in vcPI fully interacted with indicator variables for the role and the signal quality of unobserved. Table C9

reports the regression results based on the IV specification for sitcount ě 10 (minimum threshold considered

in the main text) as well as for two robustness checks with sitcount ě 1 and sitcount ě 20. Table C10

reports the regression results based on the OLS specification for sitcount ě 10, sitcount ě 20, and for

sitcount ě 30.
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sitcount ě 1 sitcount ě 10 sitcount ě 20
Constant -0.004 0.007 -0.085

(0.082) (0.080) (0.081)

vcPI1 0.633 0.509 1.560
(0.948) (0.929) (0.970)

pvcPI1q
2 -3.476 -3.147 -6.644˚

(3.210) (3.159) (3.429)

pvcPI1q
3 6.906˚˚ 6.650˚˚ 9.953˚˚˚

(2.982) (2.942) (3.265)

Low 0.297˚ 0.286 0.263
(0.176) (0.177) (0.172)

Low ˆ vcPI1 -2.698 -2.574 -2.544
(1.650) (1.664) (1.684)

Low ˆ pvcPI1q
2 7.284 6.955 7.513

(4.862) (4.907) (5.115)

Low ˆ pvcPI1q
3 -6.860˚ -6.604 -7.518˚

(4.137) (4.176) (4.458)

Medium 0.236˚˚ 0.225˚ 0.310˚˚˚
(0.115) (0.115) (0.116)

Mediumˆ vcPI1 -2.815˚˚ -2.691˚˚ -3.654˚˚˚
(1.251) (1.243) (1.296)

Mediumˆ pvcPI1q
2 8.961˚˚ 8.632˚˚ 11.811˚˚˚

(4.141) (4.113) (4.438)

Mediumˆ pvcPI1q
3 -8.467˚˚ -8.211˚˚ -11.210˚˚˚

(3.915) (3.889) (4.293)

High 0.059 0.048 0.124˚˚
(0.065) (0.062) (0.062)

Highˆ vcPI1 -1.473˚˚˚ -1.349˚˚˚ -2.039˚˚˚
(0.473) (0.440) (0.484)

Highˆ pvcPI1q
2 6.315˚˚˚ 5.986˚˚˚ 7.442˚˚˚

(1.549) (1.510) (1.991)

Highˆ pvcPI1q
3 -2.037 -1.781 -1.743

(3.771) (3.791) (4.854)

Observations 10,631 10,590 10,171
R2 0.410 0.411 0.403

Notes: i) Robust standard errors in parentheses, clustered at the session level.

ii) ˚ (10%); ˚˚ (5%); and ˚˚˚ (1%) significance level.

Table C9: Propensity to Contradict Private information in Experiment 4 (IV regressions)
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sitcount ě 10 sitcount ě 20 sitcount ě 30
Constant -0.079 -0.204 -0.259

(0.095) (0.101) (0.133)

vcPI 1.514 2.925˚ 3.591˚
(1.059) (1.178) (1.540)

pvcPIq2 -6.513 -11.056˚˚ -13.344˚
(3.520) (4.139) (5.349)

pvcPIq3 10.014˚˚ 14.086˚˚ 16.353˚˚
(3.322) (4.001) (5.220)

Low 0.506˚˚ 0.375 0.409
(0.168) (0.195) (0.236)

Low ˆ vcPI -4.868˚˚ -3.930 -4.254
(1.667) (2.003) (2.290)

Low ˆ pvcPIq2 13.934˚˚ 12.210 13.203
(5.061) (6.286) (7.017)

Low ˆ pvcPIq3 -12.832˚˚ -12.002˚ -13.052˚
(4.406) (5.586) (6.304)

Medium 0.380˚˚˚ 0.413˚˚ 0.407˚
(0.080) (0.148) (0.186)

Mediumˆ vcPI -4.723˚˚˚ -4.880˚˚ -4.716˚
(0.820) (1.698) (2.085)

Mediumˆ pvcPIq2 16.181˚˚˚ 15.850˚˚ 15.140˚
(2.671) (5.832) (7.041)

Mediumˆ pvcPIq3 -15.960˚˚˚ -15.033˚˚ -14.298˚
(2.651) (5.682) (6.841)

High 0.057 0.243˚˚ 0.322˚˚
(0.079) (0.086) (0.127)

Highˆ vcPI -0.273 -3.407˚˚ -4.819˚˚
(0.794) (0.894) (1.586)

Highˆ pvcPIq2 -3.347 11.592˚˚ 19.265˚
(3.703) (4.017) (7.828)

Highˆ pvcPIq3 16.424˚˚ -4.955 -17.411
(6.272) (7.503) (13.262)

Observations 11,650 10,595 9,775
R2 0.411 0.407 0.409

Notes: i) Robust standard errors in parentheses, clustered at the session level.

ii) ˚ (10%); ˚˚ (5%); and ˚˚˚ (1%) significance level.

Table C10: Propensity to Contradict Private information in Experiment 4 (OLS regressions)
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Figure C1 (resp. C2) plots vcPI against the proportion of contradictions collected in identical guessing

situations with sitcount ě 1 (resp. sitcount ě 20), and it superimposes fitted curves from the IV regressions.

Clearly, the average responses to vcPI predicted by IV regressions are basically identical for samples of

guessing situations with sitcount ě 1, 10 or 20.

Note: ‚̋, ‚̋, ‚̋: Unobserved guesses made with high, medium and low quality signals respectively;
‚̋: Observed guesses.

Figure C1: Responses to vcPI in Experiment 4 psitcount ě 1q

Note: ‚̋, ‚̋, ‚̋: Unobserved guesses made with high, medium and low quality signals respectively;
‚̋: Observed guesses.

Figure C2: Responses to vcPI in Experiment 4 psitcount ě 20q
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Figure C3 (resp. C4 and C5) plots vcPI against the proportion of contradictions collected in identical

guessing situations with sitcount ě 10 (resp. sitcount ě 20 and sitcount ě 30), and it superimposes fitted

curves from the OLS regressions.

Note: ‚̋, ‚̋, ‚̋: Unobserved guesses made with high, medium and low quality signals respectively;
‚̋: Observed guesses.

Figure C3: Responses to vcPI in Experiment 4 pOLS regressions, sitcount ě 10q

Note: ‚̋, ‚̋, ‚̋: Unobserved guesses made with high, medium and low quality signals respectively;
‚̋: Observed guesses.

Figure C4: Responses to vcPI in Experiment 4 pOLS regressions, sitcount ě 20q
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The average responses to vcPI predicted by OLS regressions are similar to those predicted by IV regres-

sions, with the minor exception that observed are predicted to be slightly more reluctant to contradict their

private information when incentives to follow others are weak.

Note: ‚̋, ‚̋, ‚̋: Unobserved guesses made with high, medium and low quality signals respectively;
‚̋: Observed guesses.

Figure C5: Responses to vcPI in Experiment 4 pOLS regressions, sitcount ě 30q

C.3. Dynamics of Unobserved Guesses

Table C11 (resp. C12 and C13) reports the percentage of unobserved guesses that contradict private infor-

mation in the first (resp. second and third) part of each experiment by the signal and for different majorities

of public guesses.

The comparison of the percentages of contradictions in the three parts of Experiments 2-4 reveals the

absence of strong dynamics in the herding behavior of unobserved. Indeed, for a given signal quality,

we never observe a similar variation of the percentage of contradictions as the session progresses in all

three experiments. And, in a given experiment, we never observe a similar variation of the percentage of

contradictions as the session progresses for all three qualities. In Experiments 3 and 4, however, unobserved

with high quality signals who face contrary majorities tend to contradict their private information less as the

session progresses. There is no such tendency in Experiment 2. Also, we note that the regularities described

in subsection C.2.1 are (almost) systematically observed in each of the three parts: i) subjects often guess

in accordance with their private information at favoring and no majorities; ii) the higher their signal quality

the more often unobserved follow their private information; iii) subjects contradict their private information

more frequently with orange than with blue signals at contrary majorities of size 1, but the difference vanishes

at larger contrary majorities; and iv) subjects’ propensity to contradict private information increases with

the size of the contrary majority.
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Experiment 2 Experiment 3 Experiment 4
Unobserved signal quality Unobserved signal quality Unobserved signal quality

History of Low Medium High Low Medium High Low Medium High
public guesses b o b o b o b o b o b o b o b o b o

ě 4 00% 09% 13% — — 00% 06% 00% 03% 08% 01% 05% 00% 08% 00% 00% 00% 01%
Favoring (010) (033) (024) (000) (000) (045) (118) (052) (136) (060) (236) (056) (070) (049) (042) (068) (062) (092)

3 00% 04% 10% — 00% 02% 15% 00% 00% 12% 03% 14% 07% 14% 00% 00% 00% 02%
majority (015) (027) (029) (000) (017) (041) (040) (015) (034) (017) (059) (014) (043) (021) (028) (034) (023) (048)

2 11% 07% 18% 04% 00% 04% 13% 00% 09% 06% 02% 00% 06% 14% 04% 00% 00% 04%
of size (044) (027) (049) (027) (026) (045) (040) (015) (034) (017) (059) (014) (052) (014) (028) (044) (025) (050)

1 03% 10% 05% 08% 06% 04% 15% 03% 06% 14% 03% 00% 07% 04% 00% 03% 00% 04%
(098) (040) (094) (079) (065) (054) (040) (030) (034) (021) (059) (014) (068) (047) (033) (070) (032) (048)

No majority
07% 13% 06% 12% 06% 05% 13% 19% 02% 12% 02% 06% 05% 11% 01% 09% 00% 01%
(136) (080) (118) (122) (109) (099) (082) (054) (045) (059) (061) (035) (074) (102) (077) (075) (048) (096)

1 31% 53% 22% 23% 15% 15% 48% 54% 18% 34% 00% 29% 24% 53% 14% 40% 08% 07%
Contrary (072) (062) (073) (082) (074) (079) (042) (024) (011) (038) (002) (021) (017) (060) (050) (015) (024) (056)

2 66% 68% 45% 57% 28% 23% 94% 75% 71% 74% 00% 52% 100% 80% 56% 90% 43% 23%
majority (029) (028) (029) (023) (043) (030) (017) (024) (007) (038) (002) (021) (002) (044) (036) (020) (014) (031)

3 72% 78% — 91% 30% 14% 94% 79% 57% 79% 50% 71% 100% 87% 80% 90% 88% 36%
of size (029) (009) (000) (011) (023) (007) (017) (024) (007) (038) (002) (021) (003) (045) (030) (020) (008) (025)

ě 4 74% 83% — 100% 36% — 87% 84% 65% 82% 50% 71% 71% 96% 72% 82% 100% 48%
(023) (006) (000) (008) (011) (000) (060) (074) (020) (152) (008) (084) (007) (050) (076) (022) (020) (066)

Note: Each cell contains the percentage of guesses that contradict private information and the number of guesses.

Table C11: Percentage of Unobserved Guesses that Contradict Private Information in Part 1
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Experiment 2 Experiment 3 Experiment 4
Unobserved signal quality Unobserved signal quality Unobserved signal quality

History of Low Medium High Low Medium High Low Medium High
public guesses b o b o b o b o b o b o b o b o b o

ě 4 04% — 25% — 00% — 03% 02% 01% — 02% 00% 03% — 06% 03% 02% 00%
Favoring (024) (000) (008) (000) (032) (000) (064) (064) (176) (000) (112) (064) (124) (000) (064) (032) (101) (016)

3 06% 17% 15% 13% 00% 00% 04% 00% 02% — 00% 00% 04% — 04% 13% 00% 00%
majority (048) (024) (048) (008) (008) (024) (024) (024) (048) (000) (032) (016) (047) (000) (023) (008) (046) (008)

2 04% 03% 07% 08% 00% 00% 04% 00% 00% — 03% 00% 04% 00% 04% 13% 05% 00%
of size (048) (032) (056) (024) (024) (056) (024) (024) (048) (000) (032) (016) (047) (008) (053) (008) (039) (008)

1 03% 10% 05% 08% 00% 03% 08% 13% 04% 00% 00% 08% 04% 04% 03% 13% 04% 00%
(064) (048) (056) (080) (040) (104) (024) (056) (048) (008) (032) (024) (055) (024) (093) (016) (055) (024)

No majority
06% 15% 04% 07% 04% 05% 06% 26% 04% 09% 04% 13% 08% 08% 03% 09% 00% 05%
(096) (096) (104) (104) (096) (096) (080) (080) (056) (056) (056) (056) (071) (071) (079) (079) (079) (079)

1 21% 48% 05% 25% 08% 03% 55% 79% 50% 56% 08% 38% 54% 44% 25% 26% 04% 07%
Contrary (048) (064) (080) (056) (104) (040) (056) (024) (008) (048) (024) (032) (024) (055) (016) (093) (024) (055)

2 72% 71% 21% 66% 14% 13% 92% 83% — 79% 56% 53% 75% 57% 50% 38% 25% 23%
majority (032) (048) (024) (056) (056) (024) (024) (024) (000) (048) (016) (032) (008) (047) (008) (053) (008) (039)

3 88% 85% 38% 79% 38% 38% 96% 79% — 81% 50% 66% — 74% 63% 61% 25% 37%
of size (024) (048) (008) (048) (024) (008) (024) (024) (000) (048) (016) (032) (000) (047) (008) (023) (008) (046)

ě 4 — 88% — 75% — 63% 92% 83% — 85% 50% 65% — 73% 50% 72% 38% 47%
(000) (024) (000) (008) (000) (032) (064) (064) (000) (176) (064) (112) (000) (124) (032) (064) (016) (101)

Note: Each cell contains the percentage of guesses that contradict private information and the number of guesses.

Table C12: Percentage of Unobserved Guesses that Contradict Private Information in Part 2
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Experiment 2 Experiment 3 Experiment 4
Unobserved signal quality Unobserved signal quality Unobserved signal quality

History of Low Medium High Low Medium High Low Medium High
public guesses b o b o b o b o b o b o b o b o b o

ě 4 03% 13% 00% 00% 02% 00% 05% 04% 05% 00% 04% 00% 04% 04% 02% 01% 01% 04%
Favoring (064) (008) (064) (008) (064) (008) (464) (048) (464) (048) (464) (048) (284) (071) (284) (071) (284) (071)

3 03% 06% 01% 08% 03% 00% 05% 06% 03% 00% 04% 00% 05% 04% 05% 02% 03% 02%
majority (144) (048) (144) (048) (144) (048) (120) (016) (120) (016) (120) (016) (103) (045) (103) (045) (103) (045)

2 05% 13% 02% 05% 02% 03% 05% 00% 03% 00% 04% 00% 10% 13% 06% 07% 04% 00%
of size (128) (080) (128) (080) (128) (080) (120) (016) (120) (016) (120) (016) (135) (046) (135) (046) (135) (046)

1 05% 17% 01% 07% 02% 03% 04% 11% 05% 04% 03% 04% 07% 13% 05% 08% 03% 00%
(160) (208) (160) (208) (160) (208) (128) (056) (128) (056) (128) (056) (149) (093) (149) (093) (149) (093)

No majority
09% 22% 01% 09% 01% 03% 11% 20% 07% 08% 04% 09% 06% 15% 02% 09% 01% 02%
(312) (312) (312) (312) (312) (312) (184) (184) (184) (184) (184) (184) (202) (202) (202) (202) (202) (202)

1 22% 54% 06% 18% 05% 09% 64% 67% 41% 55% 16% 25% 44% 53% 18% 30% 05% 06%
Contrary (208) (160) (208) (160) (208) (160) (056) (128) (056) (128) (056) (128) (093) (149) (093) (149) (093) (149)

2 55% 80% 31% 51% 10% 17% 94% 85% 81% 74% 50% 34% 63% 69% 48% 59% 22% 16%
majority (080) (128) (080) (128) (080) (128) (016) (120) (016) (120) (016) (120) (046) (135) (046) (135) (046) (135)

3 71% 83% 56% 67% 29% 31% 94% 84% 88% 78% 50% 43% 71% 76% 62% 66% 33% 28%
of size (048) (144) (048) (144) (048) (144) (016) (120) (016) (120) (016) (120) (045) (103) (045) (103) (045) (103)

ě 4 75% 84% 88% 73% 50% 50% 92% 86% 90% 80% 63% 47% 83% 82% 77% 71% 66% 42%
(008) (064) (008) (064) (008) (064) (048) (464) (048) (464) (048) (464) (071) (284) (071) (284) (071) (284)

Note: Each cell contains the percentage of guesses that contradict private information and the number of guesses.

Table C13: Percentage of Unobserved Guesses that Contradict Private Information in Part 3
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Appendix D. Classification of Unobserved to Decision Rules

In this appendix, we first describe the groups of guessing situations used to classify unobserved in our four

experiments. Second, we detail the guesses made by the decision rules in the different groups of guessing

situations. Finally, we report the results of our classification.

D.1. Guessing Situations

Table D1 describes the groups of guessing situations used for the classification in Experiments 1, 3 and 4.

Since unobserved learn from public signals of low quality, a different set of groups of guessing situations is

used in Experiment 2, which is described in Table D2. The tables also report for each group of guessing

situations the (empirically) optimal guess and the average incentives to guess optimally. Note that we rely

on the true incentives to make the optimal guess in Experiments 2 and 3. On the other hand, incentives to

herd in Experiments 1 and 4 are given by the empirical value of contradicting private information, vcPI,

measured at the precision level of sitcount ě 10, and incentives to follow private information are given by

1´ vcPI (in a given group, the empirical value of contradicting private information is the average weighted

by the frequency of observations in the different guessing situations).

Group of guessing situations

1 2 3 4 5 6 7 8 9 10

Quality of signal(s) Low Medium High Low Low Medium Medium Medium High High

Signal(s) {b, o} {b, o} {b, o} {b, o} {b, o} b o {b, o} {b, o} {b, o} {b, o}

Size of
the contrary t´7,´6, . . . ,´1, 0u t1, 2u ě 3 1 1 2 ě 3 t1, 2u ě 3

majority

Optimal guess FPI HERD HERD FPI HERD HERD FPI FPI

Incentives in Exp. 1 0.717 0.766 0.904 0.649 0.750 0.567 0.552 0.578 0.729 0.663
Incentives in Exp. 3 0.711 0.789 0.918 0.628 0.662 0.550 0.554 0.556 0.720 0.702
Incentives in Exp. 4 0.711 0.778 0.909 0.634 0.710 0.563 0.567 0.611 0.722 0.653

Table D1: The 10 Groups of Guessing Situations in Experiments 1, 3 and 4

There are groups of guessing situations where unobserved should follow their private information, referred

to as FPI-groups, and groups of guessing situations where they should follow the majority and contradict

their private information, referred to as HERD-groups. In the guessing situations that compose the first

three groups unobserved face either a favoring majority or no majority meaning that the string of guesses

they observe don’t conflict with their private information and guessing optimally by following the latter is

arguably straightforward. On the other hand, in the guessing situations of the remaining groups unobserved

face contrary majorities and the conflict between their private information and the string of guesses they

observe implies that guessing optimally is rather challenging. Among the HERD-groups, situations where

unobserved face short contrary majorities with medium quality signals are characterized by low incentives

to follow the majority (e.g. group 7 in Experiment 1 and group 8 in Experiment 2) whereas situations where

unobserved face large contrary majorities with low quality signals are characterized by strong incentives to

follow the majority (e.g. group 5 in Experiment 1 and group 6 in Experiment 2). Among the FPI-groups in
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Group of guessing situations

1 2 3 4 5 6 7 8 9 10 11

Quality of signal(s) Low Medium High Low Low Low Medium Medium Medium High High

Signal(s) {b, o} {b, o} {b, o} b o {b, o} {b, o} {b, o} b o {b, o} {b, o} {b, o}

Size of
the contrary t´7,´6, . . . ,´1, 0u 1 1 2 ě 3 1 t2, 3u t2, 3u ě 4 t1, 2u ě 3

majority

Optimal guess FPI FPI HERD HERD FPI HERD HERD FPI FPI

Incentives 0.644 0.718 0.881 0.550 0.572 0.687 0.595 0.556 0.659 0.804 0.672

Table D2: The 11 Groups of Guessing Situations in Experiment 2

Experiment 1 (3 or 4), the situation where unobserved are endowed with a blue medium quality signal and

face a contrary majority of size 1 entails low incentives to follow private information whereas the situations

where unobserved are endowed with high quality signals are characterized by strong incentives to follow

private information whether the contrary majority is short or long.

D.2. Non-noisy Decision Rules

We consider five non-noisy decision rules which prescribe to follow private information when facing either a

favoring majority or no majority (groups 1, 2 and 3), but guess differently in at least some of the situations

where facing a contrary majority.

The first decision rule is the successful observational learning rule (henceforth SOL) which guesses opti-

mally in every group of guessing situations.

The next two rules herd excessively compared to SOL. In Experiment 1 (3 or 4), the weak conformism

rule (henceforth WC) guesses like SOL except that it herds in groups 6 and 10 of guessing situations. In

Experiment 2, WC guesses like SOL except that it herds in groups 4, 7 and 11 of guessing situations. In

Experiment 1 (3 or 4), the strong conformism rule (henceforth SC) guesses like WC except that it also herds

in group 9 of guessing situations. In Experiment 2, SC guesses like WC except that it also herds in group

10 of guessing situations.

The last two decision rules follow private information excessively compared to SOL. In Experiment 1

(3 or 4), the weak following-private-information rule (henceforth WFPI) guesses like SOL except that it

follows private information in groups 4 and 7 of guessing situations. In Experiment 2, WFPI guesses like

SOL except that it follows private information in groups 5 and 8 of guessing situations. In Experiment 1

(3 or 4), the strong following-private-information rule (henceforth SFPI) guesses like WFPI except that it

also follows private information in groups 5 and 8 of guessing situations. In Experiment 2, SFPI guesses like

WFPI except that it also follows private information in groups 6 and 9 of guessing situations.

Tables D3 and D4 report the guesses made by the non-noisy decision rules in Experiment 1 (3 or 4) and

2 respectively.

D.3. Classification Procedure and Results

Our classification proceeds in two steps. First, for each unobserved, we compute the proportion of her optimal

guesses averaged across the first three groups of situations and the proportion of her optimal guesses averaged
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Group of guessing situations
1 2 3 4 5 6 7 8 9 10

SOL FPI FPI FPI HERD HERD FPI HERD HERD FPI FPI
WC FPI FPI FPI HERD HERD HERD HERD HERD FPI HERD
SC FPI FPI FPI HERD HERD HERD HERD HERD HERD HERD

WFPI FPI FPI FPI FPI HERD FPI FPI HERD FPI FPI
SFPI FPI FPI FPI FPI FPI FPI FPI FPI FPI FPI

Table D3: Guesses Made by the Five Non-noisy Decision Rules in Experiments 1, 3 and 4

Group of guessing situations
1 2 3 4 5 6 7 8 9 10 11

SOL FPI FPI FPI FPI HERD HERD FPI HERD HERD FPI FPI
WC FPI FPI FPI HERD HERD HERD HERD HERD HERD FPI HERD
SC FPI FPI FPI HERD HERD HERD HERD HERD HERD HERD HERD

WFPI FPI FPI FPI FPI FPI HERD FPI FPI HERD FPI FPI
SFPI FPI FPI FPI FPI FPI FPI FPI FPI FPI FPI FPI

Table D4: Guesses Made by the Five Non-noisy Decision Rules in Experiment 2

across the last seven (resp. eight) groups of situations. If both fractions are less than or equal to 50%, the

unobserved is classified as noisy. Second, for each non-noisy unobserved, we compute 5 scores where each

score reflects the adequacy between her guesses and the guesses made by one of the 5 non-noisy decision

rules. Concretely, if in a given situation her guess matches the guess of the decision rule then the score

increases by one unit, otherwise the score remains unchanged. The unobserved is said to be of the decision

rule that has the highest score.

For each unobserved we use all the guesses she submitted except those of the practice part. In Experiment

4, unobserved with ID 4109 only submitted 48 guesses and is therefore excluded from the classification.

Ties

In Experiment 1, two subjects achieve the same score with rules SOL and WFPI. Subject 1514 is classified

as WFPI whereas subject 1910 is classified as SOL. In Experiment 2, subject 2412 achieves the same score

with rules SOL and WFPI, and subject 2611 achieves the same score with rules WFPI and SFPI. Subject

2412 is classified as SOL and subject 2611 is classified as WFPI. In Experiment 3, subject 3408 achieves the

same score with rules WC and SC and is classified as WC. In Experiment 4, there is no tie.

Results

Table D5 shows for each experiment the percentage of unobserved assigned to each of the five non-noisy

decision rules as well as the percentage of unobserved classified as noisy.

SOL WC SC WFPI SFPI Noisy

Experiment 1 32% 33% 03% 25% 06% 01%

Experiment 2 54% 10% 04% 19% 13% 00%

Experiment 3 38% 19% 25% 06% 10% 02%

Experiment 4 15% 32% 02% 21% 28% 02%

Table D5: Classification of Unobserved in the Four Experiments
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Appendix E. Complements on Intuitive Observational Learning

In this appendix, we characterize the representativeness of Bayes-rational guesses for signals and we prove

that it satisfies four relevant properties. We also prove that the representativeness of quantal-response

equilibrium guesses for signals satisfies the two main properties and we offer numerical results suggesting

that the other two properties are satisfied too. Finally, we discuss some graphical illustrations of our model

of intuitive observational learning.

E.1. Characterization and Properties of Representativeness

Bayes-rational Guesses

When public guesses are Bayes-rational, the representativeness of guess gt P tB,Ou for signal st P tb, ou,

t P t1, . . . , T u, is given by

R pst, gtq “ Pr pgt | stq “
ÿ

htPHt

σ˚ pgt | st, htqPr pht | stq

“
ÿ

htPHt

σ˚ pgt | st, htq
ÿ

st´1

t´1
ź

τ“1

σ˚ pgτ | sτ , hτ qPr pst´1 | stq

where st´1 “ ps1, s2, . . . , st´1q P tb, ou
t´1, and R ps1, g1q “ σ˚ pg1 | s1q. Note that R pst, gtq “ 1 ´ R pst, ḡtq

where ḡt P tB,Ouz tgtu. Furthermore, R ps1 “ b, g1 “ Bq “ R ps1 “ o, g1 “ Oq “ 1, and, @ t ě 2,

R pst “ b, gt “ Bq “ 1´
Pr pBq p1´ qPUBq ` Pr pOq qPUB

Pr pBq qPUB ` Pr pOq p1´ qPUBq

tpt´1q{2u
ÿ

i“1

rqPUB p1´ qPUBqs
i

and R pst “ o, gt “ Oq “ 1´
1

Pr pBq p1´ qPUBq ` Pr pOq qPUB

tt{2u
ÿ

i“1

rqPUB p1´ qPUBqs
i .

where txu “ max tz P Z | z ď xu and
ř0
i“1 rqPUB p1´ qPUBqs

i
“ 0.

Proof. First, σ˚ pB | st “ b, htq “ 1 at all histories for which no O-cascade has started in period t, and

σ˚ pB | st “ b, htq “ 0 otherwise. Hence,

R pst “ b, gt “ Bq “ 1 ´ Pr pO ´ cascade in period t | st “ bq

“ 1 ´

ř

θPtB,Ou Pr pθq Pr pst “ b | θq Pr pO ´ cascade in period t | θq

Pr pBq qPUB ` Pr pOq p1´ qPUBq
.

Second, an O-cascade requires two consecutive Os not canceled out by previous guesses and may start in

any odd period. Thus,

Pr pO ´ cascade in period t | θq “
ÿ

τďt;τ odd

Pr pO ´ cascade starts in period τ | θq

“
ÿ

τďt;τ odd

rqPUB p1´ qPUBqs
pτ´3q{2 Pr psτ´2 “ o, sτ´1 “ o | θq .

Similarly, σ˚ pO | st “ o, htq “ 1 at all histories for which no B-cascade has started in period t, and

σ˚ pO | st “ o, htq “ 0 otherwise. Hence, R pst “ o, gt “ Oq “ 1 ´ Pr pB ´ cascade in period t | st “ oq. A
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B-cascade may start in any even period after one B not canceled out by previous guesses. Thus,

R pst “ o, gt “ Oq “ 1 ´

ř

θ Pr pθq
ř

τďt,τ even Pr pst “ o, sτ´1 “ b | θq rqPUB p1´ qPUBqs
pτ´2q{2

Pr pst “ oq
.

We now present a series of relevant properties that are satisfied by the representativeness of guesses for

signals.

Property 1. For each t ě 1, R pst “ b, gt “ Bq ą R pst “ o, gt “ Bq.

Proof. First, we have that R ps1 “ b, g1 “ Bq “ 1 ą R ps1 “ o, g1 “ Bq “ 1 ´ R ps1 “ o, g1 “ Oq “ 0.

Second, we have that R ps2 “ b, g2 “ Bq “ 1 ą R ps2 “ o, g2 “ Bq “ Pr ps1 “ b | s2 “ oq. Third, we prove

by induction that the property is satisfied for the case t ě 3. Let us assume that R pst´1 “ b, gt´1 “ Bq ą

R pst´1 “ o, gt´1 “ Bq. We have that

R pst`1 “ b, gt`1 “ Bq ´R pst`1 “ o, gt`1 “ Bq

“ R pst`1 “ b, gt`1 “ Bq ´ r1 ´ R pst`1 “ o, gt`1 “ Bqs

“ 1 ´
Pr pBq p1´ qPUBq ` Pr pOq qPUB

Pr pBq qPUB ` Pr pOq p1´ qPUBq

tpt´1q{2u
ÿ

i“1

rqPUB p1´ qPUBqs
i
´

tt{2u
ÿ

i“1

rqPUB p1´ qPUBqs
i

Pr pBq p1´ qPUBq ` Pr pOq qPUB

“ 1 ´ rqPUB p1´ qPUBqs

$

&

%

Pr pBq p1´ qPUBq ` Pr pOq qPUB

Pr pBq qPUB ` Pr pOq p1´ qPUBq

tpt´3q{2u
ÿ

i“0

rqPUB p1´ qPUBqs
i

`
1

Pr pBq p1´ qPUBq ` Pr pOq qPUB

tpt´2q{2u
ÿ

i“0

rqPUB p1´ qPUBqs
i

,

.

-

“ 1 ´ rqPUB p1´ qPUBqs

„

1 `
Pr pBq p1´ qPUBq ` Pr pOq qPUB

Pr pBq qPUB ` Pr pOq p1´ qPUBq
`

1

Pr pBq p1´ qPUBq ` Pr pOq qPUB



` rqPUB p1´ qPUBqs rR pst´1 “ b, gt´1 “ Bq ´R pst´1 “ o, gt´1 “ Bqs

where the first line is positive since qPUB ą Pr pBq ą 1{2 and the second line is positive by induction.

Property 2. For each t ě 2,

R pst “ b, gt “ Bq ´R pst “ o, gt “ Bq ă R pst´1 “ b, gt´1 “ Bq ´R pst´1 “ o, gt´1 “ Bq .

Proof. For t ě 2 even, R pst “ b, gt “ Bq “ R pst´1 “ b, gt´1 “ Bq, and

R pst “ o, gt “ Bq “

t{2
ÿ

i“1

rqPUB p1´ qPUBqs
i

Pr pBq p1´ qPUBq ` Pr pOq qPUB

ą

pt´2q{2
ÿ

i“1

rqPUB p1´ qPUBqs
i

Pr pBq p1´ qPUBq ` Pr pOq qPUB

.
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Similarly, for t ě 3 odd, R pst “ o, gt “ Bq “ R pst´1 “ o, gt´1 “ Bq, and

R pst “ b, gt “ Bq “ 1´
Pr pBq p1´ qPUBq ` Pr pOq qPUB

Pr pBq qPUB ` Pr pOq p1´ qPUBq

pt´1q{2
ÿ

i“1

rqPUB p1´ qPUBqs
i

ă 1´
Pr pBq p1´ qPUBq ` Pr pOq qPUB

Pr pBq qPUB ` Pr pOq p1´ qPUBq

pt´3q{2
ÿ

i“1

rqPUB p1´ qPUBqs
i .

Property 3. For each t ě 1, R pst “ o, gt “ Oq ą R pst “ b, gt “ Oq.

Proof. For each t ě 1, we have that R pst “ b, gt “ Bq ą R pst “ o, gt “ Bq (property 1). This is equivalent

to 1´R pst “ b, gt “ Bq ă 1´R pst “ o, gt “ Bq or R pst “ b, gt “ Oq ă R pst “ o, gt “ Oq for each t ě 1.

Property 4. For each t ě 2, R pst´1 “ o, gt´1 “ Oq ´ R pst´1 “ b, gt´1 “ Oq ą R pst “ o, gt “ Oq ´

R pst “ b, gt “ Oq.

Proof. For each t ě 2, we have that R pst´1 “ b, gt´1 “ Bq ´ R pst´1 “ o, gt´1 “ Bq ą R pst “ b, gt “ Bq ´

R pst “ o, gt “ Bq (property 2). This is equivalent to 1´R pst´1 “ b, gt´1 “ Oq´p1´R pst´1 “ o, gt´1 “ Oqq

ą 1´R pst “ b, gt “ Oq ´ p1´R pst “ o, gt “ Oqq which implies that for each t ě 2

R pst´1 “ o, gt´1 “ Oq´ R pst´1 “ b, gt´1 “ Oq ą R pst “ o, gt “ Oq ´R pst “ b, gt “ Oq.

Quantal-Response Equilibrium Guesses

When public guesses derive from logit quantal-response equilibrium strategies, the representativeness of

guess gt P tB,Ou for signal st P tb, ou, t P t1, . . . , T u, is given by

R pst, gt;λ
Ei
PUB
q “ Pr pgt | stq “

ÿ

htPHt

σEi
PUB
pB | sτ , hτ ;λEi

PUB
qPr pht | stq

where λEi
PUB

denotes the payoff-responsiveness and

σEi
PUB
pB | st, ht;λ

Ei
PUB
q “ 1´ σEi

PUB
pO | st, ht;λ

Ei
PUB
q “

1

1` exp pλEiPUB p1´ 2µEiPUB pp, st, ht;λ
Ei
PUBqqq

with µEi
PUB
pp, st, ht;λ

Ei
PUB
q “

”

1 ` PrpOq
PrpBq

Prpst|Oq
Prpst|Bq

Prpht|Oq
Prpht|Bq

ı´1
and Pr pht | stq “

ř

θPtB,Ou Pr pht | θq Pr pθ | stq

and where Pr pht | θq for each t P t1, . . . , T u and each θ P tB,Ou is given by

Pr pht | θq “
ź

τăt

ÿ

sτPtb,ou

Pr psτ | θq σ
Ei
PUB
pgτ | sτ , hτ ;λEi

PUB
q .

Below we prove two relevant properties that are satisfied by the representativeness of quantal-response

equilibrium guesses for signals. Note that R pst, gt;λ
Ei
PUB
q “ 1 ´ R pst, ḡt;λ

Ei
PUB
q where ḡt P tB,Ouz tgtu.

Property 1. For each t ě 1 and λEi
PUB
ą 0 sufficiently large, R pst “ b, gt “ B;λEi

PUB
q ą R pst “ o, gt “ B;λEi

PUB
q.
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Proof. To simplify notation, let λ “ λEi
PUB

, σ pgt | st, ht;λq “ σEi
PUB
pgt | st, ht;λ

Ei
PUB
q, and µ pp, st, ht;λq “

µEi
PUB
pp, st, ht;λ

Ei
PUB
q. We have that R pst “ b, gt “ B;λq ą R pst “ o, gt “ O;λq if for each ht P Ht

σ pB | st “ b, ht;λq

σ pB | st “ o, ht;λq
ě

Pr pht | st “ oq

Pr pht | st “ bq
(1)

with strict inequality for at least one history ht. Note that the LHS is strictly larger than one in quantal-

response equilibrium for each t P t1, . . . , T u and each ht P Ht. Hence, it suffices to focus on histories such

that Pr pht | st “ oq ě Pr pht | st “ bq or equivalently Pr pht | Oq ě Pr pht | Bq. The latter implies that

µ pp, st “ b, ht;λq ď
PrpBq qPUB

PrpBq qPUB ` PrpOq p1´ qPUBq

and µ pp, st “ o, ht;λq ď
PrpBq p1´ qPUBq

PrpBq p1´ qPUBq ` PrpOq qPUB

ă
1

2
.

We prove below that for these beliefs and λ sufficiently large σ pB | st “ b, ht;λq {σ pB | st “ o, ht;λq ě

µ pp, st “ b, ht;λq {µ pp, st “ b, ht;λq. Since

µ pp, st “ b, ht;λq

µ pp, st “ b, ht;λq
“

qPUB

1´ qPUB

Pr pst “ oq

Pr pst “ bq

Pr pht | st “ oq

Pr pht | st “ bq

and qPUB{ p1´ qPUBq ą Pr pst “ bq {Pr pst “ oq this suffices to prove (1) .

Let Gpµ;λq “ fpµq{µ where fpµq “ r1` exp pλ p1´ 2µqqs´1. We have that G is increasing whenever

p2 λ µ ´ 1q eλ ´ e2λµ ą 0.

First, this holds for any µ “ 1{λ and µ “ 1{2 if λ ą 2. Second, for sufficiently large λ, it also holds for

µ “ z{λ where 0.5 ă z ă 1. Third, the LHS is increasing (decreasing) if µ ă pąq 1{2. We therefore conclude

that G is increasing for every µ P
“

µ, µ
‰

where µ ą 1{2 and µ can be arbitrarily small for sufficiently large

λ. Hence, G pµ pp, st “ b, ht;λqq ą G pµ pp, st “ o, ht;λqq provided µ pp, st “ b, ht;λq ă µ. Indeed, if 1{2 ă

µ pp, st “ b, ht;λq ă qPUB and µ pp, st “ b, ht;λq is on the decreasing part of G then G pµ pp, st “ b, ht;λqq ą

G pqPUBq ą G p1´ qPUBq ą G pµ pp, st “ o, ht;λqq where the second inequality holds if 1 ´ qPUB ą f p1´ qPUBq

and the third inequality holds since µ pp, st “ b, ht;λq ă qPUB implies µ pp, st “ o, ht;λq ă 1´ qPUB.

Property 2. For each t ě 1 and λEi
PUB
ą 0 sufficiently large, R pst “ o, gt “ O;λEi

PUB
q ą R pst “ b, gt “ O;λEi

PUB
q.

Proof. This directly follows from Property 1 and R pst, gt;λ
Ei
PUB
q “ R pst, ḡt;λ

Ei
PUB
q where ḡt P tB,Ou z tgtu.

Table E1 provides the representativeness of quantal-response equilibrium guesses for signals for different

values of λEi
PUB

and for the parametrization of the observational learning game employed in Experiments 1

and 4 where Pr pBq “ 1´Pr pOq “ 0.55, qPUB “ 14{21, and T “ 7 (recall that observed only act in periods 1 to

7). The table shows that properties 1 and 2 hold even for small values of λEi
PUB

. Moreover, the results suggest

that R pst “ b, gt “ B;λEi
PUB
q ´ R pst “ o, gt “ B;λEi

PUB
q and R pst “ o, gt “ O;λEi

PUB
q ´ R pst “ b, gt “ O;λEi

PUB
q

decrease in t, as in the case of representativeness of Bayes-rational guesses for signals.

E.2. Illustrative Predictions of Intuitive Observational Learning

To illustrate our model of intuitive observational learning, we predicted the responses to vcPI for 18 different

behavioral types across the guessing situations of Experiment 4 with sitcount ě 10. Figure E1 shows the

associated plots of the empirical value of contradicting private information against the predicted probability
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λEi
PUB
“ 1 λEi

PUB
“ 2.5 λEi

PUB
“ 5 λEi

PUB
“ 10

Period R pb, B;λEi
PUB
q R po,B;λEi

PUB
q R pb, B;λEi

PUB
q R po,B;λEi

PUB
q R pb, B;λEi

PUB
q R po,B;λEi

PUB
q R pb, B;λEi

PUB
q R po,B;λEi

PUB
q

1 0.6033 0.4399 0.7405 0.3536 0.8906 0.2303 0.9851 0.0821
2 0.6033 0.4400 0.7372 0.3567 0.8565 0.2773 0.8995 0.3047
3 0.6032 0.4400 0.7343 0.3593 0.8323 0.3004 0.8205 0.3302
4 0.6032 0.4401 0.7317 0.3616 0.8151 0.3180 0.7966 0.3786
5 0.6031 0.4401 0.7293 0.3637 0.8015 0.3309 0.7713 0.3920
6 0.6031 0.4401 0.7272 0.3656 0.7906 0.3411 0.7584 0.4088
7 0.6030 0.4402 0.7252 0.3673 0.7816 0.3494 0.7467 0.4172

Table E1: Representativeness of QRE Guesses for Signals in the Laboratory Observational Learning Game

of contradicting. As before black (green and red) bubbles denote guessing situations with a medium (low

and high) signal quality. For readability, we also plot curves from a logistic regression. All illustrations

assume that λi “ 10.

In a given panel, the public information weight wi P t0.25, 1, 2.5u varies across columns increasing

from left to right, and the payoff-responsiveness attributed to others λEi
PUB
P t2.5, 10, 40u varies across rows

increasing from top to bottom. There is a null degree of local thinking (`i “ 0) in the upper panel, and an

extreme degree of local thinking (`i Ñ8) in the lower panel.

First, we find that behavioral types with wi “ 0.25 are always reluctant to contradict their low and

medium quality signals (left column). These behavioral types contradict their low and medium quality

signals more often when they are extreme local thinkers (lower panel) than in the absence of local thinking

(upper panel). On the other hand, predicted responses to vcPI in the left column hardly vary across the

rows of a given panel. This indicates that the level of noise attributed to public guesses hardly affects the

behavior of types with wi “ 0.25.

Second, reluctance to contradict low and medium quality signals is never predicted when wi ą 0.25,

except for the behavioral type (wi “ 1, `i “ 0, λEi
PUB
“ 2.5) which mildly does so. The first two observations

suggest that a small public information weight best captures the reluctance to contradict low and medium

quality signals.

Third, for any λEi
PUB
P t2.5, 10, 40u, excessive herding with high quality signals results either from wi ě 1

and extreme local thinking or from wi “ 2.5 and the absence of local thinking. The difference is that

behavioral types with wi “ 2.5 and `i “ 0 exhibit a stronger tendency to herd excessively with low and

medium quality signals than extreme local thinkers who properly weight public information. Moreover,

large public information weights lead to excessive herding with high quality signals even at short contrary

majorities, a prediction that does not hold for large degrees of local thinking. Thus, both pronounced local

thinking and large public information weights predict excessive herding with high quality signals.

Fourth, the level of noise assigned to public guesses has little impact on the predictions in the absence

of local thinking, and basically no impact in case of extreme local thinking.
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(a) Absence of Local Thinking (`i “ 0)

(b) Extreme Local Thinking (`i Ñ8)

Figure E1: Illustrative Predictions of Intuitive Observational Learning
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Appendix F. Estimation and Prediction Procedures

In this appendix, we first detail the estimation procedure for the four models of intuitive observational

learning introduced in subsection 4.3 of the main text. Second, we report the estimates for models 1λ-QRE,

2λs-QRE, and 3λs-QR (IOL’s estimates are in the main text). Third, we detail our prediction framework

and we report prediction results complementary to those in the main text.

F.1. Estimation Procedure

Index subjects by i “ 1, . . . , I and subject i’s guessing contexts by c “ 1, . . . , Ci where Ci is the number

of guesses submitted by subject i in the non-practice rounds. Each guessing context c is characterized by

the tuple psic, qic, hicq where sic P tb, ou is subject i’s private signal of quality qic P t12{21, 14{21, 18{21u and

hic is the history of public guesses she observes, and gic P tB,Ou denotes subject i’s guess in context c.

Let Y i “ psic, qic, hicq
Ci
c“1 denote the collection of subject i’s guessing contexts and gi “ pgicq

Ci
c“1 the vector

of her guesses. Given her behavioral type pΨi, λiq “
´

wi, `i, λ
Ei
PUB
, λ

E2
i

PUB, λi

¯

, subject i’s likelihood function is

given by

Li pgi | Y i; Ψi, λiq “
Ci
ź

c“1

σi pgic | µi pp, sic, qic, hic; Ψiq ;λiq (F1)

where σi pgic | µi pp, sic, qic, hic; Ψiq ;λiq is her quantal response with µi pp, sic, qic, hic; Ψiq her belief.

We estimate the model parameters at the individual level to avoid making restrictive assumptions about

the joint distribution of these parameters, i.e., we maximize (F1) for each subject i “ 1, . . . , I. And to

mitigate empirical identification problems, we employ a step-wise estimation procedure for models IOL,

2λs-QRE, and 3λs-QR.

In the case of models IOL and 2λs-QRE, we repeatedly estimate the parameters pwi, `i, λiq, for each

subject i, while holding the ratio λEi
PUB
{λi fixed at each value in the grid Ξ “ t0.1, 0.2, . . . , 0.8, 0.9, 1u Y

t1{0.9, 1{0.8, . . . , 5, 10u. Concretely, for each value in Ξ we maximize (F1) with respect to pwi, `i, λiq using

the Newton-Raphson-algorithm and we repeat the procedure at least 10 times with random starting values

to rule out local maxima.2 We then select the ratio that maximizes the log-likelihood across all 19 estimation

runs. For IOL, we only keep parameter estimates with λ̂Ei
PUB
‰ λ̂i if they significantly improve the fit of the

model over the parameter estimates with λ̂Ei
PUB
“ λ̂i.

In the case of model 3λs-QR, we adapt the estimation procedure. For each subject i, we repeatedly

estimate pwi, `i, λiq while holding the pair of ratios λEi
PUB
{λi and λ

E2
i

PUB{λEiPUB
fixed at each point in the grid Ξ2.

Hence, we perform (at least) 361 estimation runs for each subject i. We then select the parameter estimates

from the estimation run which achieves the highest log-likelihood ratio across these 361 runs. Furthermore,

we perform additional estimation runs if the log-likelihood ratio is maximized on the boundaries of the

grid where either (i) λEi
PUB
{λi ą 1 and λ

E2
i

PUB{λEiPUB
“ 0.1, or (ii) λEi

PUB
{λi ă 1 and λ

E2
i

PUB{λEiPUB
“ 10. In the first

(second) case we additionally estimate pwi, `i, λiq for ratios λEi
PUB
{λi ą 1 and λ

E2
i

PUB{λEiPUB
ă 0.1 (λEi

PUB
{λi ă 1 and

λ
E2
i

PUB{λEiPUB
ą 10) with λEi

PUB
{λi P Ξ and

”

λ
E2
i

PUB{λEiPUB

ı

{ rλEi
PUB
{λis P Ξ.

Standard Errors

We use the bootstrap method of Efron and Tibshirani (1993) to obtain standard errors for our parameter

estimates except λEi
PUB

and λ
E2
i

PUB. We bootstrap parameter by parameter, fixing the other parameters at their

estimated values. In each run of the bootstrap for a given subject, we draw 240 times with replacement from

2We use the Broyden-Fletcher-Goldfarb-Shannon algorithm in case of convergence problems.
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the set of decisions and we attempt 500 replications for each subject and each parameter (resp. 1,000 for

IOL). Due to convergence issues not all replications may be used. Each standard error is based on at least

200 replications (resp. 400 for IOL). Note also that, contrary to the procedure for the estimates, we did not

repeat the estimation in each bootstrap run which implies that the estimation procedure may have converged

to local maxima in some of the runs. Thus, bootstrapped standard errors are likely to overestimate the true

standard deviation of the parameter estimates.

F.2. Complementary Estimation Results

Tables F1, F2, and F3 report the estimation results for models 1λ-QRE, 2λs-QRE, and 3λs-QR respectively.

For each unobserved in Experiment 4 (except subject 4109), each table contains (i) the estimates and

bootstrapped standard errors of wi, `i, and λi, (ii) the grid values of λEi
PUB
{λi and λ

E2
i

PUB{λEiPUB
that maximize

the log-likelihood ratio across all estimation runs, and (iii) the maximum log-likelihood ratio.

We make two observations. First, as the model of expectations about others’ strategy becomes richer,

the distribution of estimated public information weights shifts towards higher values—the first (second and

third) quartile of this distribution is 0.20 (0.58 and 1.00) for 1λ-QRE, 0.24 (0.78 and 1.40) for 2λs-QRE,

and 0.34 (0.74 and 1.38) for 3λs-QR. Thus, a richer model of expectations leads to fewer estimated weights

of low value. This first observation confirms that the reluctance to contradict private information can be

captured either through attributing to others a smaller payoff-responsiveness than one’s own or through the

underweighting of the signals inferred from public guesses.

Second, lower estimated degrees of local thinking are associated with richer models of expectations.

While 40 subjects satisfy ˆ̀
i{

´

1` ˆ̀
i

¯

ą 0.1 and 11 subjects are almost full local thinkers (ˆ̀
i{

´

1` ˆ̀
i

¯

ą 0.9)

for 1λ-QRE, these numbers decrease to 37 and 6 for 2λs-QRE and to 19 and 2 for 3λs-QR. This second

observation confirms that informational overinferences from public guesses can be captured either through

the belief that others systematically make informative guesses or through local thinking.

In sum, allowing for rich expectations about others’ strategy can partly substitute for non-Bayesian

updating and local thinking in capturing the behavior of unobserved.

F.3. Prediction Framework

To measure the predictive power of an estimated model of intuitive observational learning, we evaluate the

accuracy of its predictions relative to the guesses made by unobserved in Experiment 4.

Measuring Predictive Power

The aggregate behavior of unobserved in Experiment 4 can be summarized with the help of matrix X “

ptr, hr, sr, qr, value contra PIr, prop contrar, sitcountrq
R
r“1 where each row r represents a guessing situation

with period tr P t1, 2, . . . , 8u, history hr P Htr , private signal sr P tb, ou of quality qr P t12{21, 14{21, 18{21u,

empirical value of contradicting private information value contra PIr, fraction of guesses that contradict

private information prop contrar, and the number of occurrences of the guessing situation sitcountr. Given

an estimated model of intuitive observational learning M and the matrix X, our prediction exercise proceeds

as follows.

First, we compute for each guessing situation r the predicted probability to contradict private information

for each of the K behavioral types that comprise model M . Denote by pred prop contrakr the predicted

probability that type k “ 1, . . . ,K contradicts its private signal in guessing situation r. Second, we take the

average across these K probabilities, pred prop contrar “
řK
k“1 pred prop contra

k
r{K. Third, we calculate

a weighted sum of squared differences (SSD) between pred prop contrar and prop contrar where the sum
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λ̂ Expectations

Unobserved Est. SE Est. SE Est. SE λ̂EPUB{λ̂ λ̂E
2

PUB{λ̂
E
PUB LL

4108 0.729 (0.095) 0.588 (0.089) 5.694 (0.592) 1 1 -61.8
4110 1.046 (0.103) 0.761 (0.115) 6.681 (0.988) 1 1 -44.4
4111 0.578 (0.071) 0.521 (0.090) 13.625 (4.609) 1 1 -29.6
4112 0.446 (0.067) 0.699 (0.143) 7.662 (1.457) 1 1 -55.4
4113 0.177 (0.089) 0.000 (0.175) 5.777 (1.024) 1 1 -88.1
4114 0.321 (0.064) 0.787 (0.165) 7.289 (1.156) 1 1 -59.6
4115 0.016 (0.028) 0.606 (0.267) 7.382 (0.855) 1 1 -72.0
4208 0.372 (0.109) 0.000 (0.095) 5.732 (0.751) 1 1 -82.3
4209 2.020 (0.282) 0.317 (0.082) 4.308 (0.414) 1 1 -66.3
4210 0.870 (0.053) 0.733 (0.041) 29.655 (10.149) 1 1 -14.2
4211 0.089 (0.032) 0.584 (0.215) 9.531 (2.289) 1 1 -53.7
4212 0.052 (0.036) 0.953 (0.460) 4.427 (0.456) 1 1 -101.2
4213 2.646 (0.238) 0.122 (0.070) 6.538 (0.973) 1 1 -37.2
4214 0.041 (0.008) 0.766 (0.107) 71.592 (49.977) 1 1 -15.3
4215 0.767 (0.057) 0.539 (0.053) 9.774 (1.745) 1 1 -37.8
4308 0.346 (0.027) 0.987 (0.103) 14.810 (5.457) 1 1 -27.0
4309 1.349 (0.191) 0.433 (0.107) 7.514 (1.689) 1 1 -28.0
4310 0.067 (0.053) 0.275 (0.210) 6.102 (3.178) 1 1 -81.0
4311 0.045 (0.016) 0.993 (0.280) 14.527 (8.866) 1 1 -38.7
4312 0.242 (0.022) 0.967 (0.062) 21.097 (6.104) 1 1 -23.3
4313 1.104 (0.079) 0.990 (0.103) 46.877 (1.2E+02) 1 1 -5.6
4314 0.544 (0.073) 0.899 (0.121) 4.861 (0.565) 1 1 -67.6
4315 1.000 (0.077) 0.303 (0.048) 11.717 (11.510) 1 1 -24.3
4408 0.196 (0.068) 0.691 (0.208) 8.438 (1.544) 1 1 -54.3
4409 0.612 (0.024) 0.661 (0.018) 24.061 (5.032) 1 1 -19.2
4410 0.001 (7.303) 0.047 (0.482) 0.170 (0.212) 1 1 -166.2
4411 0.562 (0.200) 0.000 (0.118) 4.811 (0.543) 1 1 -91.8
4412 0.999 (0.115) 0.519 (0.079) 7.682 (1.353) 1 1 -50.6
4413 0.667 (0.052) 0.968 (0.080) 7.173 (0.914) 1 1 -51.2
4414 0.842 (0.092) 0.614 (0.079) 4.920 (0.583) 1 1 -70.3
4415 0.653 (0.088) 0.719 (0.092) 6.116 (0.797) 1 1 -62.6
4508 1.019 (0.062) 0.447 (0.043) 14.903 (2.210) 1 1 -23.1
4509 0.368 (0.041) 0.943 (0.097) 8.355 (1.311) 1 1 -49.1
4510 0.000 (0.035) 0.032 (0.270) 6.833 (0.941) 1 1 -73.0
4511 0.838 (0.073) 0.307 (0.059) 8.004 (1.058) 1 1 -51.7
4512 0.307 (0.034) 0.790 (0.047) 11.838 (1.460) 1 1 -38.8
4513 0.000 (0.000) 0.413 (0.000) 2.524 (0.342) 1 1 -134.9
4514 0.136 (0.024) 0.700 (0.085) 17.074 (3.232) 1 1 -31.1
4515 1.078 (0.101) 0.501 (0.087) 5.827 (0.670) 1 1 -44.7
4608 1.857 (0.162) 0.068 (0.062) 6.114 (0.633) 1 1 -43.8
4609 1.394 (0.169) 0.970 (0.122) 9.957 (26.639) 1 1 -20.7
4610 0.675 (0.034) 0.842 (0.057) 13.719 (3.844) 1 1 -27.0
4611 2.181 (3.897) 0.987 (0.053) 8.203 (5.033) 1 1 -20.4
4612 0.651 (0.254) 0.000 (0.148) 2.280 (0.336) 1 1 -137.3
4613 0.286 (0.051) 0.963 (0.196) 3.896 (0.505) 1 1 -100.7
4614 0.437 (0.108) 0.332 (0.143) 4.951 (0.508) 1 1 -84.9
4615 1.014 (0.080) 0.903 (0.079) 10.969 (3.349) 1 1 -23.8

Note: Bootstrapped standard errors in parentheses.

Table F1: Parameter Estimates for 1λ-QRE
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Unobserved Est. SE Est. SE Est. SE λ̂EPUB{λ̂ λ̂E
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4108 1.279 (0.159) 0.465 (0.070) 6.163 (0.552) 0.3 1 -60.1
4110 2.278 (0.204) 0.500 (0.048) 7.584 (0.577) 0.2 1 -41.2
4111 1.089 (0.104) 0.044 (0.049) 15.796 (1.942) 0.2 1 -23.6
4112 1.228 (0.173) 0.323 (0.099) 8.009 (0.856) 0.2 1 -53.7
4113 0.216 (0.084) 0.000 (0.218) 5.816 (0.911) 10 1 -87.1
4114 0.861 (0.160) 0.418 (0.117) 7.399 (0.753) 0.2 1 -59.2
4115 0.031 (0.040) 0.666 (0.309) 7.380 (0.855) 10 1 -71.9
4208 0.382 (0.116) 0.000 (0.138) 5.705 (0.732) 3.33 1 -81.9
4209 2.478 (0.354) 0.330 (0.087) 4.563 (0.437) 0.6 1 -65.2
4210 1.426 (0.098) 0.289 (0.053) 28.911 (8.863) 0.1 1 -10.7
4211 0.094 (0.035) 0.740 (0.207) 9.530 (2.281) 10 1 -53.7
4212 0.052 (0.036) 0.991 (0.375) 4.427 (0.466) 0.1 1 -101.2
4213 3.053 (0.285) 0.094 (0.112) 6.772 (0.887) 0.7 1 -36.8
4214 0.041 (0.008) 0.767 (0.117) 71.389 (30.884) 2.5 1 -15.3
4215 0.744 (0.049) 0.710 (0.045) 9.686 (2.213) 2.5 1 -37.6
4308 0.784 (0.069) 0.560 (0.047) 14.726 (1.247) 0.1 1 -26.2
4309 1.397 (22.117) 0.666 (0.084) 6.912 (2.207) 10 1 -27.5
4310 0.193 (0.118) 0.000 (0.180) 6.188 (1.413) 10 1 -80.1
4311 0.059 (0.021) 0.797 (0.179) 14.481 (5.390) 0.1 1 -38.7
4312 0.242 (0.018) 0.969 (0.032) 21.096 (5.687) 5 1 -23.3
4313 1.104 (0.077) 0.968 (0.151) 46.877 (3.5E+02) 0.1 1 -5.6
4314 0.555 (0.070) 0.915 (0.050) 4.876 (0.563) 10 1 -67.5
4315 0.977 (0.071) 0.538 (0.062) 11.337 (4.037) 10 1 -23.9
4408 0.201 (0.069) 0.717 (0.203) 8.430 (1.684) 1.43 1 -54.3
4409 0.621 (0.031) 0.706 (0.017) 22.172 (7.017) 10 1 -17.8
4410 0.305 (0.740) 0.256 (0.343) 0.185 (0.191) 10 1 -166.2
4411 0.562 (0.196) 0.000 (0.119) 4.811 (0.543) 1 1 -91.8
4412 1.115 (0.101) 0.687 (0.048) 7.596 (1.204) 10 1 -45.5
4413 1.413 (0.107) 0.592 (0.034) 7.435 (0.522) 0.2 1 -49.8
4414 0.853 (0.079) 0.799 (0.037) 5.089 (0.611) 10 1 -68.8
4415 0.742 (0.077) 0.815 (0.037) 6.310 (0.718) 10 1 -59.7
4508 0.933 (0.058) 0.641 (0.052) 15.567 (4.279) 10 1 -22.6
4509 3.001 (0.283) 0.000 (0.051) 8.394 (0.579) 0.1 1 -48.7
4510 0.000 (0.029) 0.032 (0.246) 6.833 (0.920) 1 1 -73.0
4511 0.841 (0.072) 0.335 (0.060) 7.779 (1.002) 1.25 1 -51.5
4512 0.686 (0.072) 0.266 (0.057) 13.287 (1.304) 0.2 1 -34.4
4513 0.000 (0.000) 0.413 (0.000) 2.524 (0.333) 1 1 -134.9
4514 0.145 (0.026) 0.762 (0.069) 16.996 (3.033) 10 1 -30.6
4515 1.807 (0.166) 0.365 (0.056) 7.231 (0.593) 0.3 1 -40.3
4608 2.130 (0.199) 0.000 (0.055) 6.553 (0.667) 0.7 1 -43.4
4609 2.221 (0.311) 0.775 (0.035) 10.443 (88.665) 0.1 1 -20.4
4610 1.270 (0.065) 0.338 (0.035) 14.682 (1.172) 0.2 1 -22.8
4611 2.181 (0.320) 0.992 (0.046) 8.203 (5.086) 0.1 1 -20.4
4612 0.614 (0.237) 0.000 (0.145) 2.279 (0.339) 1.11 1 -137.3
4613 0.286 (0.050) 0.994 (0.027) 3.896 (0.503) 0.1 1 -100.7
4614 0.376 (0.091) 0.681 (0.121) 5.184 (0.587) 10 1 -82.8
4615 3.146 (0.257) 0.407 (0.053) 12.769 (0.933) 0.1 1 -21.7

Note: Bootstrapped standard errors in parentheses.

Table F2: Parameter Estimates for 2λs-QRE
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4108 1.160 (0.154) 0.000 (0.078) 6.346 (0.651) 0.6 0.1 -58.5
4110 1.722 (0.150) 0.240 (0.081) 7.830 (0.634) 0.4 0.1 -39.6
4111 0.671 (0.058) 0.000 (0.035) 17.862 (12.099) 0.3 0.2 -21.0
4112 0.630 (0.079) 0.106 (0.132) 8.069 (1.420) 0.6 0.1 -52.8
4113 0.180 (0.070) 0.000 (0.098) 5.871 (1.090) 5 0.2 -86.9
4114 0.358 (0.064) 0.728 (0.139) 7.295 (1.119) 10 0.09 -59.0
4115 0.063 (0.049) 0.000 (0.115) 7.412 (0.801) 10 0.06 -71.4
4208 0.383 (0.115) 0.000 (0.142) 5.700 (0.744) 3.33 1.25 -81.8
4209 2.196 (0.301) 0.000 (0.065) 4.767 (0.452) 1 0.1 -61.2
4210 0.775 (0.024) 0.000 (0.042) 64.257 (13.480) 0.3 0.1 -9.1
4211 0.113 (0.036) 0.000 (0.240) 9.662 (2.162) 10 0.04 -53.0
4212 0.052 (0.036) 0.985 (0.407) 4.427 (0.449) 1 1 -101.2
4213 4.022 (0.398) 0.057 (0.062) 6.741 (0.679) 0.5 1.67 -36.6
4214 0.101 (0.019) 0.000 (0.051) 68.131 (43.148) 0.1 5 -14.4
4215 0.766 (0.060) 0.524 (0.072) 9.533 (1.056) 10 0.07 -36.6
4308 0.920 (0.078) 0.281 (0.048) 15.533 (2.004) 0.2 50 -24.7
4309 1.284 (20.134) 0.364 (0.105) 7.940 (0.697) 10 0.08 -26.7
4310 0.194 (0.119) 0.000 (0.189) 6.185 (1.184) 10 0.4 -80.1
4311 0.094 (0.032) 0.271 (0.195) 14.457 (91.039) 0.2 0.1 -38.6
4312 0.335 (0.018) 0.498 (0.039) 21.110 (1.167) 10 0.03 -21.0
4313 1.155 (0.058) 0.000 (0.436) 50.687 (9.827) 0.5 0.1 -5.4
4314 0.579 (0.063) 0.000 (0.304) 5.000 (0.497) 10 0.02 -66.5
4315 0.977 (0.072) 0.538 (0.044) 11.337 (5.098) 10 0.3 -23.9
4408 0.270 (0.059) 0.082 (0.295) 8.672 (1.472) 10 0.05 -53.1
4409 0.664 (0.039) 0.137 (0.034) 27.040 (6.639) 1 0.1 -13.9
4410 0.486 (0.770) 0.000 (0.291) 0.207 (0.199) 10 0.1 -166.1
4411 0.501 (0.180) 0.000 (0.118) 4.799 (0.521) 1.11 0.6 -91.8
4412 0.935 (0.062) 0.000 (0.075) 8.365 (0.930) 10 0.03 -40.5
4413 1.471 (0.107) 0.188 (0.064) 7.593 (0.502) 0.4 0.1 -48.6
4414 1.546 (0.193) 0.081 (0.092) 5.063 (0.423) 0.7 0.1 -68.5
4415 0.743 (0.078) 0.815 (0.038) 6.294 (0.771) 10 0.3 -59.7
4508 0.822 (0.022) 0.095 (0.028) 26.191 (9.384) 1.67 0.06 -20.6
4509 3.025 (0.284) 0.000 (0.051) 8.383 (0.579) 0.1 1.11 -48.7
4510 0.000 (0.034) 0.032 (0.285) 6.833 (0.920) 1 1 -73.0
4511 0.784 (0.063) 0.185 (0.084) 8.378 (0.639) 10 0.06 -47.6
4512 0.498 (0.046) 0.000 (0.037) 16.008 (1.537) 0.3 0.1 -30.4
4513 0.000 (0.000) 0.000 (0.000) 2.524 (0.333) 1 1 -134.9
4514 0.145 (0.026) 0.762 (0.069) 16.996 (3.033) 10 1 -30.6
4515 1.381 (0.118) 0.000 (0.046) 7.860 (0.633) 0.6 0.1 -36.2
4608 1.618 (0.176) 0.000 (0.061) 6.647 (0.724) 0.9 0.4 -42.7
4609 2.731 (0.367) 0.712 (0.039) 10.447 (1.926) 0.1 5 -20.3
4610 1.384 (0.092) 0.057 (0.058) 16.214 (1.360) 0.2 0.1 -21.8
4611 2.181 (58.796) 0.964 (0.052) 8.203 (5.086) 1 1 -20.4
4612 0.694 (0.244) 0.000 (0.111) 2.292 (0.327) 1.67 10 -136.8
4613 5.729 (0.990) 0.000 (0.076) 3.895 (0.367) 0.1 100 -100.2
4614 0.376 (0.090) 0.683 (0.114) 5.173 (0.583) 10 0.4 -82.8
4615 1.906 (0.158) 0.346 (0.069) 12.571 (0.931) 0.2 0.1 -21.0

Note: Bootstrapped standard errors in parentheses.

Table F3: Parameter Estimates for 3λs-QR
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is taken across guessing situations and each guessing situation is weighted by sitcountr. The SSD of model

M is thus given by SSDM “
řR
r“1 sitcountr pprop contrar ´ pred prop contrarq

2. Finally, we compute

the predictive power of model M as

PPM “ 1 ´ SSDM{SSDB,

where SSDB denotes the weighted sum of squared differences of our theoretical benchmark. The predictive

power of model M is thus the reduction in the SSD compared to the theoretical benchmark.

Theoretical Benchmark

Our theoretical benchmark assumes that players know the informational value of public guesses, whether

these guesses are compatible with Bayesian rationality or not, that they form beliefs using Bayes’ rule, and

that they make probabilistic money-maximizing guesses conditional on their beliefs. To compute SSDB,

we assume more specifically that benchmark guesses are logit quantal-responses to an extended version

of value contra PI. Thus, we assume that benchmark player k contradicts her private information with

probability

σBk pB | sk “ o, htq “ σBk pO | sk “ b, htq “
 

1 ` exp
`

λBk
“

1 ´ 2 value contra PI 1
‰˘(´1

where λBk is benchmark player k’s payoff-responsiveness, and value contra PI 1 is the extended version

of value contra PI. We have that value contra PI 1 equals value contra PI whenever the latter exists.

Otherwise, value contra PI 1 equals

$

’

&

’

%

”

1 ` 11 q
9 p1´qq

xPrpht|Bq
xPrpht|Oq

ı´1

if sk “ b
”

1 ` 9 q
11 p1´qq

xPrpht|Oq
xPrpht|Bq

ı´1

if sk “ o

where q is the quality of benchmark player k’s private signal, and xPr pht | θq is the fraction of rounds in

which history ht occurred among all rounds in which the state is θ P tB,Ou. Extending the empirical value

of contradicting private information allows us to use the same set of guesses to estimate a model and to

measure its predictive power.

Simulated Confidence Intervals

To check whether differences in predictive power are statistically significant we perform a simulation exercise.

For each model and each guessing situation r “ 1, . . . , R we randomly draw a new set of guesses according to

a binomial distribution where the probability to draw a single guess contradicting the private signal is given

by the probability to contradict private information predicted by the model. We then calculate predictive

power from the relative frequencies of new guesses contradicting the private signal in each guessing situation.

Formally, the relative frequency of new guesses contradicting the private signal in guessing situation r is

a random variable ˜FCPIr{sitcountr where ˜FCPIr „ B psitcountr, pred prop contrarq. We repeat the

simulation process 1,000 times to construct the 90%-confidence intervals of the model’s predictive power.

We note that the simulation-average predictive power (average predictive power across the 1,000 simu-

lation runs) differs from the predictive power calculated directly from the average predicted probabilities to
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contradict private information. This follows from

SSD1M “

R
ÿ

r“1

ppcr ´ p̃crq
2
¨ scr

“

R
ÿ

r“1

”

ppcr ´ ppcrq
2
` 2 pp̃cr ´ ppcrq pppcr ´ pcrq ` pp̃cr ´ ppcrq

2
ı

¨ scr

“ SSDM `

R
ÿ

r“1

2 pp̃cr ´ ppcrq pppcr ´ pcrq scr `
R
ÿ

r“1

ppcr r1´ ppcrs

where pcr “ prop contrar, ppcr “ pred prop contrar, p̃cr “ ˜FCPIr{sitcountr, and scr “ sitcountr. While

the second term on the RHS is likely to be small, the third term is positive. Accordingly, the average

SSD of model M across simulation runs is likely to be larger than the SSD calculated directly from the

predicted probabilities to contradict private information, and the difference depends on the predictions and

thus on the model M . We therefore systematically state the simulation-average predictive power alongside

the confidence intervals.

F.4. Complementary Prediction Results

We here report prediction results for Experiment 4 that are discussed in subsection 4.3 of the main text.

Table F4 reports the simulated confidence-intervals and the simulation-average predictive power of our 4

models of intuitive observational learning. Table F5 shows the predictive power of IOL by signal quality,

size of the contrary majority, and value contra PI. To ease interpretation, the table also contains the

number of guesses for each subset of guessing situations and the weighted sum of squared deviations of the

benchmark model (SSDB). Note that for a given set of guessing situations X and subsets tXju
J
j“1 such that

X “
ŤJ
j“1Xj the predictive power of IOL on set X is a weighted sum of the predictive power on the subsets

Xj where the weight of each subset is given by the corresponding SSDB. Finally, Table F6 contains the

empirical, IOL predicted, and benchmark proportions of contradictions in the different guessing situations

distinguished in Table F5.

Signal Quality IOL 1λ-QRE 2λs-QRE 3λs-QR

Low 53.4% 52.8% 53.6% 54.3%
(44.6%,61.4%) (44.1%,61.0%) (45.6%,61.6%) (45.6%,62.5%)

Medium 76.0% 75.3% 76.3% 76.5%
(70.5%,81.3%) (69.6%,80.7%) (70.7%,81.3%) (71.1%,81.4%)

High 78.2% 78.1% 78.8% 79.4%
(74.0%,82.3%) (73.6%,82.3%) (74.2%,82.9%) (75.1%,83.4%)

All 69.4% 68.9% 69.7% 70.2%
(65.7%,72.7%) (65.2%,72.3%) (66.1%,73.1%) (66.9%,73.3%)

Table F4: Simulated Confidence Intervals of Models of Intuitive Observational Learning
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Range of value contra PI
Signal Quality Majority r0, 0.4q r0.4, 0.5q r0.5, 0.6q r0.6, 1s

Pred. Power 82.4% 38.4% 61.8% 54.8%
All SSDB [54.1] [42.6] [15.8] [38.1]

Nb. of Guesses (1,932) (386) (236) (1,206)

Pred. Power 74.8% 86.1% 99.3% 94.8%
Favoring SSDB [19.4] [4.2] [4.4] [7.9]

Nb. of Guesses (1,526) (32) (12) (18)

Pred. Power 82.3% 35.9% 76.0% 97.1%
Low No SSDB [20.7] [37.3] [5.8] [5.4]

Nb. of Guesses (347) (312) (49) (10)

Pred. Power 73.3% -101.2% 17.3% 27.6%
Small Contrary SSDB [2.8] [0.8] [5.6] [17.0]

Nb. of Guesses (34) (34) (175) (435)

Pred. Power 97.8% 81.6% 44.1%
Large Contrary SSDB [11.2] [0.3] – [7.8]

Nb. of Guesses (25) (8) (743)

Pred. Power 89.8% 88.6% 68.4% 86.1%
All SSDB [60.6] [14.6] [13.8] [56.9]

Nb. of Guesses (2,348) (228) (278) (906)

Pred. Power 90.3% 99.3% 98.2%
Favoring SSDB [13.8] [2.5] – [17.5]

Nb. of Guesses (1,522) (14) (28)

Pred. Power 91.2% 98.6% 100.0%
Medium No SSDB [28.1] [2.0] – [5.2]

Nb. of Guesses (661) (42) (8)

Pred. Power 24.6% 83.9% 68.8% 83.2%
Small Contrary SSDB [1.8] [10.0] [12.3] [21.9]

Nb. of Guesses (100) (172) (181) (257)

Pred. Power 94.0% 65.6% 68.5%
Large Contrary SSDB [16.9] – [1.4] [12.3]

Nb. of Guesses (65) (97) (613)

Pred. Power 66.5% 36.4% 96.3%
All SSDB [52.7] [10.6] – [103.4]

Nb. of Guesses (3,477) (58) (225)

Pred. Power 83.0% 99.9%
Favoring SSDB [8.6] – – [13.8]

Nb. of Guesses (1,575) (16)

Pred. Power 98.0% 99.9%
High No SSDB [6.8] – – [8.6]

Nb. of Guesses (693) (10)

Pred. Power 45.8% -136.6% 97.1%
Small Contrary SSDB [12.1] [0.4] – [38.7]

Nb. of Guesses (599) (1) (73)

Pred. Power 62.3% 42.4% 93.5%
Large Contrary SSDB [25.1] [10.2] – [42.3]

Nb. of Guesses (610) (57) (126)

Note: A small (large) contrary majority is of size 1 or 2 (3 or more).

Table F5: Predictive Power of IOL in Diverse Guessing Situations
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Range of value contra PI
Signal Quality Majority Model r0, 0.4q r0.4, 0.5q r0.5, 0.6q r0.6, 1s

Empirical 0.077 0.155 0.403 0.716
All IOL 0.110 0.387 0.491 0.788

Benchmark 0.176 0.452 0.586 0.800
Empirical 0.058 0.062 0.000 0.278

Favoring IOL 0.078 0.103 0.051 0.155
Benchmark 0.147 0.412 0.607 0.930
Empirical 0.063 0.118 0.163 0.200

Low No IOL 0.158 0.377 0.331 0.325
Benchmark 0.297 0.455 0.501 0.930
Empirical 0.471 0.471 0.498 0.607

Small Contrary IOL 0.552 0.666 0.565 0.739
Benchmark 0.208 0.464 0.608 0.774
Empirical 0.880 0.625 0.797

Large Contrary IOL 0.832 0.707 – 0.838
Benchmark 0.226 0.435 0.811

Empirical 0.068 0.175 0.477 0.634
All IOL 0.089 0.228 0.561 0.627

Benchmark 0.163 0.414 0.592 0.773
Empirical 0.035 0.000 0.143

Favoring IOL 0.045 0.035 – 0.064
Benchmark 0.120 0.426 0.930
Empirical 0.051 0.119 0.125

Medium No IOL 0.099 0.116 – 0.134
Benchmark 0.250 0.338 0.930
Empirical 0.270 0.203 0.335 0.545

Small Contrary IOL 0.339 0.271 0.454 0.531
Benchmark 0.222 0.431 0.567 0.778
Empirical 0.708 0.742 0.701

Large Contrary IOL 0.632 – 0.762 0.699
Benchmark 0.202 0.639 0.763

Empirical 0.105 0.793 0.271
All IOL 0.095 0.464 – 0.196

Benchmark 0.084 0.367 – 0.930
Empirical 0.019 0.000

Favoring IOL 0.021 – – 0.024
Benchmark 0.084 0.930
Empirical 0.017 0.000

High No IOL 0.026 – – 0.028
Benchmark 0.116 – 0.930
Empirical 0.107 1.000 0.205

Small Contrary IOL 0.082 0.085 – 0.102
Benchmark 0.195 0.405 0.930
Empirical 0.423 0.789 0.365

Large Contrary IOL 0.379 0.470 – 0.286
Benchmark 0.256 0.367 0.930

Table F6: Empirical, IOL Predicted, and Benchmark Proportions of Contradictions
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Appendix G. The Predictive Value of Heterogeneity in Belief Distortions

Our estimation results for IOL show that there is a rich diversity in the weighting of public information

and in the degree of local thinking whereas most unobserved believe that others have the same payoff-

responsiveness as them. This appendix first evaluates the predictive value of heterogeneous, rather than

homogeneous, non-Bayesian updating or local thinking. Second, we measure the loss in the predictive power

of IOL when all belief distortions are homogeneous.

G.1. Heterogeneous versus Homogeneous Non-Bayesian Updating or Local Thinking

To assess the predictive value of heterogeneity in non-Bayesian updating, we compare the predictive power

of heterogeneous and homogeneous non-Bayesian updating in Experiment 2. In heterogeneous non-Bayesian

updating, the two parameters w and λ are individual-specific, and, in homogeneous non-Bayesian updating,

the public information weight is common across the 48 unobserved while the payoff-responsiveness remains

individual-specific. Similarly, to assess the predictive value of heterogeneity in local thinking, we compare

the predictive power of heterogeneous and homogeneous local thinking, combined with heterogeneous non-

Bayesian updating, in Experiment 3. In heterogeneous local thinking, the three parameters w, `, and λ

are individual-specific, and, in homogeneous local thinking, the degree of local thinking is common across

the 48 unobserved while the public information weight and the payoff-responsiveness are both individual-

specific. Thus, in the homogeneous cases, we estimate some of the parameters jointly across unobserved by

maximizing the joint likelihood function with respect to 49 variables in Experiment 2 (1 w and 48 λs) and

with respect to 97 variables in Experiment 3 (1 `, 48 ws, and 48 λs).3

We derive the predictive power of heterogeneous and homogeneous non-Bayesian updating (resp. local

thinking combined with heterogeneous non-Bayesian updating) from the average predicted probabilities to

contradict private information in the guessing situations of Experiment 2 (resp. Experiment 3) where the

average is taken across behavioral types. Table G1 reports for the four cases the predictive power by the

quality of private signals and averaged across qualities.4

In heterogeneous non-Bayesian updating, we find that the median estimate of w is close to 1 (it equals

1.13), and that the first and third quartile is 0.51 and 1.73 respectively. This rich diversity in public

information weights is comparable to the one observed in Experiment 4 (the first, second and third quartile

of the distribution of estimated weights in Experiment 4 is 0.23, 0.71 and 1.30 respectively.) Moreover,

assuming that subjects share a common public information weight decreases the predictive power of non-

Bayesian updating by approximately 20% across signal qualities and by at least 14% for each signal quality

(the loss in predictive power is larger the higher the signal quality). In fact, the normative model predicts

on average as well as non-Bayesian updating with a common weight and the latter also fails to capture

excessive herding with high quality signals (the common public information weight is 1.091).

Figure G1 shows the responses to the true value of contradicting private information (tvcPI ) predicted by

heterogeneous and homogeneous non-Bayesian updating. The upper (lower) subfigure plots tvcPI against

the probability to contradict private information predicted by homogeneous (heterogeneous) non-Bayesian

updating. Each subfigure relies on the entire sample of guessing situations and it superimposes fitted lines

from a weighted linear regression that includes a cubic polynomial in tvcPI fully interacted with indicator

variables for the signal quality. The figure clearly shows that non-Bayesian updating with a common weight

3Comparing the predictive power of IOL with heterogeneous and homogeneous non-Bayesian updating in Experiment 4
biases the predictive value of heterogeneity in non-Bayesian updating since the estimated parameters for the two other belief
distortions differ in the two versions of IOL. Similarly, a biased predictive value of heterogeneity in local thinking is obtained
when comparing the predictive power of IOL with heterogeneous and homogeneous local thinking.

4Estimation results are available from the authors upon request.
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Non-Bayesian Updating (Exp. 2) Local Thinking (Exp. 3)
Homogeneous Heterogeneous Homogeneous Heterogeneous

-6.0% 8.4% 23.6% 26.9%
Low Signal Quality [-3.7%] [3.9%] [21.7%] [24.5%]

(-24.0%,15.0%) (-15.2%,20.1%) (-3.5%,42.1%) (-1.9%,44.2%)

-8.2% 11.6% 75.0% 74.7%
Medium Signal Quality [-5.5%] [7.0%] [67.1%] [66.8%]

(-28.5%,13.8%) (-14.1%,26.7%) (55.5%,77.6%) (54.9%,76.5%)

12.1% 41.6% 92.0% 93.3%
High Signal Quality [7.7%] [27.9%] [88.2%] [89.4%]

(-9.3%,23.5%) (11.3%,41.5%) (84.2%,91.6%) (85.6%,92.6%)

-2.0% 17.9% 77.9% 79.1%
All Signal Qualities [-1.2%] [10.7%] [72.2%] [73.3%]

(-13.3%,9.9%) (-0.8%,20.5%) (67.6%,76.6%) (68.9%,77.6%)

Notes: Unbracketed numbers are predictive powers based on mean predicted probabilities to contradict private information;
numbers in square brackets are predictive powers based on simulated contradictions averaged across 1,000 runs; and 90%-
confidence intervals exclude the 50 runs with the lowest and the 50 runs with the highest predictive power.

Table G1: Predictive Power of Non-Bayesian Updating and Local Thinking With & W/O Heterogeneity

is neither able to predict excessive herding with high quality signals nor a reluctance to contradict low or

medium quality signals at short contrary majorities. In contrast, excessive herding with high quality signals

is predicted by heterogeneous non-Bayesian updating, though the effect is small.

When allowing for heterogeneous local thinking, we find considerable diversity in the subjects’ ability

to learn successfully from Bayes-rational guesses. While 8 subjects make proper informational inferences

(ˆ̀{
´

1` ˆ̀
¯

ă 0.1), 14 subjects are extreme local thinkers (ˆ̀{
´

1` ˆ̀
¯

ą 0.9), and 24 subjects are partial local

thinkers.5 Despite this rich diversity, which is comparable to the one observed in Experiment 4, we observe

that homogeneous local thinking predicts as well as heterogeneous local thinking (the common degree of

local thinking equals 0.572). Thus, there is a strong heterogeneity in the degree of local thinking, but this

heterogeneity has little predictive value.

Figure G2 shows the responses to the true value of contradicting private information (tvcPI ) predicted

by heterogeneous and homogeneous local thinking. The upper (lower) subfigure plots tvcPI against the

probability to contradict private information predicted by homogeneous (heterogeneous) local thinking.

Each subfigure relies on the entire sample of guessing situations and it superimposes fitted lines from a

weighted linear regression that includes a cubic polynomial in tvcPI fully interacted with indicator variables

for the signal quality. The two subfigures are hardly distinguishable but for a slightly larger degree of

excessive herding with a common degree of local thinking especially at very long contrary majorities of

size 6 or 7. In these guessing situations the predicted probability to contradict private information with a

common degree of local thinking is slightly too large.

G.2. Heterogeneous versus Homogeneous Intuitive Observational Learning

Here, we compare the predictive power of IOL in Experiment 4 to the predictive power of a variant with

a common public information weight, a common degree of local thinking, and a common ratio λE
PUB
{λ. We

find that IOL with a single belief distortion type achieves a predictive power of 68.8%, considerably less

5We fail to estimate the degree of local thinking for two subjects. One subject always guesses in line with private information
while the other subject is a noisy observational learner.
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Note: ‚̋, ‚̋, ‚̋: Unobserved guesses made with high, medium and low quality signals respectively.

Figure G1: Predicted Responses to the True Value of Contradicting Private Information in Experiment 2

than heterogeneous IOL (76.8%).6 This difference is marginally significant, as the 90%-confidence interval

for homogeneous IOL is r57.9%, 66.2%s compared to r65.7%, 72.7%s for heterogeneous IOL.

6The common parameter estimates are given by ŵ “ 5.34, ˆ̀{
´

1` ˆ̀
¯

“ 0, and λ̂EPUB{λ̂ “ 0.08. The log-likelihood of the

homogeneous model equals -3,143.2.
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Note: ‚̋, ‚̋, ‚̋: Unobserved guesses made with high, medium and low quality signals respectively.

Figure G2: Predicted Responses to the True Value of Contradicting Private Information in Experiment 3
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Appendix H. The Predictive Power of Restricted Versions of Intuitive

Observational Learning

In this appendix, we first measure the loss in predictive power that results from excluding either non-

Bayesian updating or local thinking from IOL. This allows us to investigate whether two belief distortions

are sufficient to capture well the behavior of unobserved in Experiment 4. Then, we measure the loss in

predictive power that results from excluding either non-Bayesian updating or local thinking from 1λ-QRE.

Our discussion of the prediction results in subsection 4.3 of the main text has made clear that 1λ-QRE

predicts (almost) as well as IOL for each signal quality. By comparing the loss in predictive power for IOL

to the loss in predictive power for 1λ-QRE we assess the role played by mildly flexible expectations about

others’ strategy in compensating for the missing component.

We compare the predictive power of IOL (referred to as IOL-Full in this appendix) to the predictive power

of two restricted versions of IOL, one where belief updating is Bayesian (referred to as IOL-Bayesian) and one

where local thinking is absent (referred to as IOL-Sophisticated). For all three models, we first estimate the

parameters for each unobserved in Experiment 4 (except subject 4109) and then we compare the predictive

power of the three models based on the predicted probabilities to contradict private information in each

guessing situation. Table H1 reports for each of the three models the predictive power by the quality of

private signals and averaged across signal qualities.7

Signal IOL- 1λ-QRE-
Quality Full Bayesian Sophisticated Full Bayesian Sophisticated

60.8% 59.7% 60.1% 60.2% 39.2% 47.4%
Low [53.4%] [52.2%] [52.6%] [52.8%] [35.2%] [40.7%]

(44.6%,61.4%) (43.7%,59.8%) (43.5%,61.0%) (44.1%,61.0%) (24.3%,45.0%) (30.4%,50.3%)

86.3% 86.2% 85.4% 85.6% 61.5% 69.9%
Medium [76.0%] [75.7%] [75.2%] [75.3%] [54.4%] [60.6%]

(70.5%,81.3%) (70.0%,80.7%) (69.4%,80.8%) (69.6%,80.7%) (45.9%,62.0%) (52.1%,68.2%)

83.1% 82.1% 83.3% 82.9% 84.5% 80.5%
High [78.2%] [77.3%] [78.4%] [78.1%] [78.3%] [75.3%]

(74.0%,82.3%) (73.0%,81.4%) (73.9%,82.7%) (73.6%,82.3%) (74.0%,82.1%) (70.2%,79.9%)

76.8% 76.1% 76.4% 76.4% 62.6% 66.4%
All [69.4%] [68.6%] [68.9%] [68.9%] [56.5%] [59.2%]

(65.7%,72.7%) (65.1%,71.9%) (65.3%,72.4%) (65.2%,72.3%) (52.1%,61.0%) (54.8%,63.5%)

Notes: Unbracketed numbers are predictive powers based on mean predicted probabilities to contradict private information;
numbers in square brackets are predictive powers based on simulated contradictions averaged across 1,000 runs; and 90%-
confidence intervals exclude the 50 runs with the lowest and the 50 runs with the highest predictive power.

Table H1: Predictive Power of Restricted Versions of IOL and 1λ-QRE in Experiment 4

The results in columns 2 to 4 of Table H1 show that the restricted versions of IOL predict as well as the

full model. This holds across signal qualities and regardless of the size of the contrary majority. Accordingly,

herding behavior is well captured by a model of QRE expectations, where the noise level attributed to others

is possibly different than one’s own, combined with either non-Bayesian updating or local thinking.

As for IOL, we compare the predictive power of 1λ-QRE (referred to as 1λ-QRE-Full in this appendix)

to the predictive power of two restricted versions of 1λ-QRE, one where belief updating is Bayesian (referred

to as 1λ-QRE-Bayesian) and one where local thinking is absent (referred to as 1λ-QRE-Sophisticated).

Predictive powers are reported in the last three columns of Table H1 by the quality of private signals

and averaged across signal qualities. Contrary to IOL, the predictive power markedly decreases when 1λ-

7Estimation results are available upon request.
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QRE is combined only with either non-Bayesian updating or local thinking. For example, 1λ-QRE with

Bayesian updating predicts rather poorly when the signal quality is low or medium. Thus, a model of

QRE expectations, where the noise level attributed to others is identical to one’s own, combined with either

non-Bayesian updating or local thinking fails to adequately capture herding behavior.

In sum, we find that, as alluded to in Appendix F, sufficiently rich expectations about others’ strategy

can substitute for non-Bayesian updating or local thinking in describing herding behavior. Still, the fact

that expectation models of how others learn from public guesses are flexible enough to be descriptively

accurate does not entail that they pinpoint the main principles behind herding behavior. Actually, the

evidence gathered in Experiments 2-3 strongly suggests that non-Bayesian updating and local thinking are

more relevant principles governing herding behavior.
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Appendix I. Intuitive Observational Learning with Efficiency Concerns

In former appendices we measured the within-sample predictive power of IOL. Here, we measure the out-

of-sample predictive power of (extensions of) IOL by calibrating the model from unobserved guesses in

Experiment 4 and predicting observed guesses in Experiment 4 as well as observed and unobserved guesses in

Experiment 1. Concretely, we rely on the model’s parameters estimated for each unobserved in Experiment 4

(except subject 4109) to predict the mean probabilities to contradict private information in the guessing

situations of observed in Experiment 4 as well as in the guessing situations of both observed and unobserved

in Experiment 1.

All results are collected in Table I1. The table reports for each of the two experiments the predictive

power of three variants of IOL by role, quality of private signals, and majority types. We discuss those

results step-by-step below.

Experiment 4 Experiment 1
Signal All Favoring Contrary All Favoring Contrary
Quality Situations Majority Majority Situations Majority Majority

IOL: Observed
Medium 64.7% 86.5% 49.4% 64.6% 89.5% 36.9%

(I) [56.5%] [80.8%] [38.1%] [58.8%] [85.4%] [29.8%]
(46.9%,64.8%) (74.5%,86.3%) (21.0%,53.2%) (51.1%,65.9%) (81.1%,89.5%) (13.1%,44.8%)

IOL: Unobserved
Low 60.8% 66.7% 47.2% 52.6% 62.7% 24.7%

[53.4%] [62.3%] [34.0%] [45.4%] [58.7%] [13.0%]
(44.6%,61.4%) (52.7%,70.7%) ( 16.9%,50.6%) (36.0%,54.6%) (49.0%,67.4%) (-10.4%,33.1%)

Medium 86.3% 93.9% 79.3% 56.1% 90.6% 27.7%
[76.0%] [89.0%] [64.2%] [48.5%] [84.7%] [18.2%]

(II) (70.5%,81.3%) (84.9%,92.0%) (53.5%,73.9%) (38.3%,57.2%) (80.1%,88.8%) (-2.8%,35.0%)

High 83.1% 95.7% 79.3% 72.8% 93.8% 64.1%
[78.2%] [92.4%] [73.6%] [65.6%] [89.0%] [54.7%]

(74.0%,82.3%) (89.6%,94.6%) (67.9%,79.0%) (56.9%,73.0%) (83.9%,92.7%) (41.2%,66.0%)

All 76.8% 80.8% 73.5% 58.1% 74.5% 38.7%
[69.4%] [76.7%] [63.0%] [51.0%] [70.6%] [28.7%]

(65.7%,72.7%) (72.0%,81.0%) (57.6%,67.9%) (45.7%,56.1%) (65.2%,75.6%) (17.9%,38.4%)

IOL with Efficiency Concerns (IOL-EC): Observed
Medium 69.8% 86.2% 58.3% 76.5% 88.0% 63.8%

(III) [60.8%] [80.4%] [46.0%] [69.7%] [84.0%] [54.0%]
(51.7%,68.7%) (73.6%,85.8%) (31.3%,59.1%) (63.3%,75.3%) (79.3%,88.2%) (41.1%,64.9%)

IOL with Expected Efficiency Concerns (IOL-ExpEC): Unobserved
Low 60.8% 66.7% 47.2% 53.5% 63.6% 25.4%

[53.4%] [62.3%] [34.0%] [46.3%] [59.6%] [14.0%]
(44.6%,61.4%) (52.7%,70.7%) (16.9%,50.6%) (36.6%,55.1%) (49.7%,68.4%) (-8.1%,34.0%)

Medium 86.3% 93.9% 79.3% 58.4% 90.7% 31.8%
[76.0%] [89.0%] [64.2%] [50.5%] [84.9%] [21.7%]

(IV) (70.5%,81.3%) (84.9%,92.0%) (53.5%,73.9%) (40.6%,59.0%) (80.1%,88.8%) ( 2.8%,38.3%)

High 83.1% 95.7% 79.3% 77.5% 93.8% 70.6%
[78.2%] [92.4%] [73.6%] [68.8%] [88.9%] [59.3%]

(74.0%,82.3%) (89.6%,94.6%) (67.9%,79.0%) (60.1%,76.4%) (84.4%,92.7%) (45.5%,70.2%)

All 76.8% 80.8% 73.5% 60.3% 75.0% 42.7%
[69.4%] [76.7%] [63.0%] [52.8%] [71.1%] [31.9%]

(65.7%,72.7%) (72.0%,81.0%) (57.6%,67.9%) (46.9%,58.1%) (65.3%,76.1%) (20.9%,41.3%)

Notes: Unbracketed numbers are predictive powers based on mean predicted probabilities to contradict private information;
numbers in square brackets are predictive powers based on simulated contradictions averaged across 1,000 runs; and 90%-
confidence intervals exclude the 50 runs with the lowest and the 50 runs with the highest predictive power.

Table I1: Predictive Power of IOL and its Extensions in Experiments 1 and 4
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I.1. Predicting Observed Guesses in Experiment 4

First, we discuss the results for observed in Experiment 4, which are reported in panel (I). Since the

parameters are estimated from unobserved guesses across three signal qualities, this exercise is clearly more

demanding for the model than predicting unobserved guesses in Experiment 4. Unsurprisingly, we find that

the predictive power of IOL is lower for observed than for unobserved guesses in Experiment 4 and that the

difference is statistically significant. This indicates that fitting the model across all three signal qualities

limits the extent to which we can predict guessing behavior for any single quality. The predictive power for

observed guesses is also significantly lower than the predictive power for unobserved guesses with medium

quality signals. This suggests that the behavior of the two roles, though similar on average, is driven in part

by different forces. Note also that the difference in predictive power is largest at contrary majorities.

Though the out-of-sample predictive power (about 65%) is lower than the within-sample predictive

power (about 77%), IOL’s out-of-sample predictions are considerably and significantly more accurate than

the out-of-sample predictions of our theoretical benchmark. We now investigate the robustness of this

finding by turning to IOL’s predictive power in Experiment 1 whose procedures slightly differ from those of

Experiment 4.

I.2. Predicting Guesses in Experiment 1

The last three columns of panel (II) report IOL’s predictive powers for unobserved in Experiment 1. For

comparison, columns 2-4 of the panel report IOL’s predictive powers for unobserved in Experiment 4.

Remember that unobserved are less inclined to follow others when they should in Experiment 4 than in

Experiment 1. Lower predictive powers are therefore expected in Experiment 1 than in Experiment 4 as the

calibration is done in the latter experiment. Indeed, we find that IOL’s predictive powers for unobserved

are considerably smaller in Experiment 1 than in Experiment 4. This holds especially for the medium

signal quality and at contrary majorities. In those situations IOL mostly underpredicts the propensity to

contradict private information.8

Moreover, contrary to the results for Experiment 4, IOL’s predictive power in Experiment 1 is higher

for observed than for unobserved endowed with medium quality signals. This corroborates our finding that

observed in Experiment 1 rely more strongly on their private information than unobserved in Experiment 1

since unobserved in Experiment 4 also show a higher propensity to follow private information than unobserved

in Experiment 1. As argued before, this suggests that observed take into account the informational benefits

of their guesses for their successors. Below we evaluate the increase in predictive power when considering

an extension of IOL that takes into account these efficiency concerns.

I.3. Accounting for Efficiency Concerns

To capture the behavioral differences between observed and unobserved, we propose an extension of IOL that

incorporates efficiency concerns. Though we do not adopt the equilibrium approach introduced in March

and Ziegelmeyer (2016), our overly simple extension captures the main regularities they identified. First,

altruistic players act more informatively than selfish players when the monetary incentives to follow others

are sufficiently weak and they have sufficiently many successors who can benefit from the revelation of their

private information. Second, future informational benefits of actions do not alter behavior if the monetary

incentives to follow others are strong or if players act late in the sequence. Obviously, these two regularities

cannot be captured when calibrating the model from unobserved guesses in Experiment 4. Moreover, belief

8Concretely, this holds for 74% (82%) of the guessing situations and 71% (80%) of the guesses in which unobserved endowed
with low (medium) quality signals face a contrary majority.
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distortion parameters cannot be estimated in an unbiased manner from guesses which take into account the

future informational benefits of guesses since belief distortions are likely to capture in part this influence.

Therefore, we consider an extension of IOL, referred to as IOL-EC, which comprises K Intuitive where

each Intuitive k “ 1, . . . ,K is characterized by four parameters pwk, `k, λ
E
PUB
, λkq and the vector αk “

`

α2
k, α

3
k, . . . , α

T
k

˘

. The parameter αtk determines how the public information weight is distorted in period

t ě 2 due to efficiency concerns. Concretely, in period t ě 2 Intuitive k assigns weight wk ¨ α
t
k to the

public likelihood ratio. Accordingly, the weight assigned to the public likelihood ratio by Intuitive k has two

components: (i) a cognitive component wk which derives from the inability to combine multiple signals in a

Bayesian way, and (ii) a foresight component αtk which derives from Intuitive k taking into account future

informational benefits of her guesses. To properly account for the impact of efficiency concerns we assume

that 0 ă α2
k ď α3

k ď . . . ď αTk ď 1.

We merely aim at finding out whether taking into account the future informational benefits of guesses

improves IOL’s predictive power for observed in Experiments 1 and 4. We therefore make the following

simplifying assumptions. First, we assume that αk is common across Intuitive, i.e., αk ” α “
`

α2, . . . , α7
˘

.

Second, we assume that αt “ 1 for t ě 5. Third, we do not estimate the parameters of IOL-EC. Instead, we

rely on the set of parameter estimates for unobserved in Experiment 4 and we perform a coarse grid search

for the vectors
`

α2, α3, α4
˘

P t0, 0.1, 0.2, . . . , 1u3 with α2 ď α3 ď α4 that achieve the highest predictive power

for observed in Experiments 1 and 4 respectively.

Panel (III) reports the predictive power of IOL-EC for observed guesses in each experiment. The results

show that allowing observed to take into account the future informational benefits of guesses improves

considerably the predictive power of IOL. In Experiment 1, the grid search delivers the largest predictive

power for α2 “ 0.2 and α3 “ α4 “ 1, and IOL-EC’s predictive power is almost 12% larger than IOL’s

predictive power. We also find an improvement in Experiment 4, though the grid search suggests a smaller

influence of efficiency concerns (α2 “ 0.6 and α3 “ α4 “ 1) and the difference in predictive power between

IOL-EC and IOL is lower (only 5%). The results confirm that observed guessing behavior is partially driven

by altruism and that the impact is stronger in Experiment 1 than in Experiment 4. This raises the question

whether unobserved expect observed to act altruistically. We address this question next.

I.4. Are Efficiency Concerns Expected?

We consider a second extension of IOL, referred to as IOL-ExpEC, which comprises K Intuitive where

each Intuitive k “ 1, . . . ,K is characterized by the four parameters pwk, `k, λ
E
PUB
, λkq and the vector γk “

`

γ1k , γ
2
k , . . . , γ

T
k

˘

. The parameter γtk determines how the payoff-responsiveness assigned to observed in period

t is distorted due to the expectation that observed act altruistically. More precisely, Intuitive k expects

observed to play a quantal-response equilibrium where the (commonly known) payoff-responsiveness in

period t is given by λE
PUB
¨ γtk. We assume that γ1k ě γ2k ě . . . ě γTk ě 1, in line with the fact that altruistic

observational learners make guesses that are more informative in early than in late periods. Additionally,

we assume that (i) γk is common across Intuitive, i.e., γk ” γ “
`

γ1, γ2, . . . , γ8
˘

, (ii) γt “ 1 for t ě 5, and

(iii) γ3 “ γ4. Furthermore, we rely on the set of parameter estimates for unobserved in Experiment 4 and

we perform a coarse grid search for the vectors
`

γ1, γ2, γ3, γ4
˘

P t1, 1.5, 2, . . . , 5u4 with γ1 ě γ2 ě γ3 “ γ4

that induce the highest predictive power for unobserved in Experiments 1 and 4 respectively.

Panel (IV) reports the predictive power of IOL-ExpEC for unobserved in each experiment. We find

that IOL-ExpEC achieves a slightly larger predictive power than IOL for unobserved in Experiment 1. The

largest predictive power is obtained for γt “ 2 for t “ 1, . . . , 4 and the increase in IOL’s predictive power

is about 2%. The difference is larger at contrary than at favoring majorities and largest for high quality
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signals. Indeed, across guessing situations in which unobserved are endowed with high quality signals the

(out-of-sample) predictive power of IOL-ExpEC for unobserved in Experiment 1 is not significantly smaller

than the (within-sample) predictive power of either IOL or IOL-ExpEC for unobserved in Experiment 4.

We therefore conclude that unobserved in Experiment 1 have a partial understanding that observed are

influenced by the future informational benefits of guesses.

In contrast, whatever the parameter constellation, IOL-ExpEC’s predictive power is never larger than

IOL’s predictive power for unobserved in Experiment 4. Hence, unobserved in Experiment 4 fail to expect

that observed act altruistically when learning from others. This finding may explain why unobserved are

less prone to follow others in Experiment 4 than in Experiment 1.

Figure I1 shows the responses to vcPI predicted by IOL-ExpEC in Experiment 1. The figure considers only

guessing situations with sitcount ě 10 and superimposes fitted lines from a weighted IV regression that

includes a cubic polynomial in the value of contradicting private information fully interacted with indicator

variables for the signal quality and the role. The figure shows that the predicted guesses for unobserved with

high quality signals closely match the empirical guesses. On the other hand, IOL-ExpEC fails to predict

the pronounced reluctance to contradict low quality signals. Also, IOL-ExpEC predicts probabilities to

contradict medium quality signals at vcPI P s0.5, 0.6s that are much lower than the empirical ones. Thus,

procedural differences between Experiments 1 and 4 cannot be fully accounted for by extending intuitive

observational learning.

Note: ‚̋, ‚̋, ‚̋: Unobserved guesses made with high, medium and low quality signals respectively.
‚̋: Observed guesses.

Figure I1: IOL-ExpEC Predicted Responses to vcPI in Experiment 1
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